Life in the Universe (2)

Planets and Astrobiology (2019-2020) G. Vladilo

Search for habitable exoplanets with measurements of masses and radii

So far, most exoplanets with measurements of masses <u>and</u> radii have a mean insolation much higher than that of the Earth With few exceptions (e.g. Trappist-1) they lie outside the habitable zone

Planet	<i>M</i> (M⊕)	$R \atop (R_{\oplus})$	ρ (g cm ⁻³)	$g \ (g_\oplus)$	$\log(S_{\rm eff})$	Ref.
Kepler-20 b	$8.70^{+2.10}_{-2.20}$	$1.91^{+0.12}_{-0.21}$	6.89	2.38	2.54	Gautier (2012)
Kepler-11 b	$1.90^{+1.40}_{-1.00}$	$1.80^{+0.03}_{-0.05}$	1.80	0.59	2.10	Lissauer (2013)
Kepler-11 c	$2.90^{+2.90}_{-1.60}$	$2.87^{+0.05}_{-0.06}$	0.68	0.35	1.96	Lissauer (2013)
Kepler-11 d	$7.30^{+0.80}_{-1.50}$	$3.12^{+0.06}_{-0.07}$	1.33	0.75	1.64	Lissauer (2013)
Kepler-11 e	$8.00^{+1.50}_{-2.10}$	$4.19_{-0.09}^{+0.07}$	0.60	0.46	1.44	Lissauer (2013)
Kepler-11 f	$2.00^{+0.80}_{-0.90}$	$2.49^{+0.04}_{-0.07}$	0.71	0.32	1.22	Lissauer (2013)
Kepler-10 b	$4.56^{+1.17}_{-1.29}$	$1.42^{+0.03}_{-0.04}$	8.86	2.27	3.55	Batalha (2011)
CoRoT-7 b	$4.90^{+0.80}_{-0.80}$	$1.68^{+0.09}_{-0.09}$	5.70	1.74	3.26	Léger (2009); Queloz (2009)
Kepler-68 b	$8.30^{+2.20}_{-2.40}$	$2.31^{+0.06}_{-0.09}$	3.71	1.56	2.61	Gilliland (2013)
GJ1214 b	$6.55_{-0.98}^{+0.98}$	$2.68^{+0.13}_{-0.13}$	1.88	0.91	1.21	Charbonneau (2009)
Kepler-36 b	$4.45_{-0.27}^{+0.33}$	$1.49^{+0.04}_{-0.04}$	7.48	2.02	2.34	Carter (2012)
Kepler-36 c	$8.08^{+0.60}_{-0.46}$	$3.68^{+0.05}_{-0.05}$	0.89	0.60	2.24	Carter (2012)
HD97658 b	$7.86^{+0.03}_{-0.03}$	$2.34_{-0.15}^{+0.18}$	3.38	1.44	2.42	Dragomir (2013)
55Cnc e	$7.81^{+0.58}_{-0.53}$	$2.08^{+0.16}_{-0.17}$	4.79	1.81	3.39	Demory (2011)
Kepler-18 b	$6.90^{+3.40}_{-3.40}$	$2.00^{+0.10}_{-0.10}$	4.76	1.73	2.67	Cochran (2011)

Exploring the climate and habitability of exoplanets

Climate models are constrained using stellar, orbital and planetary data obtained from the observations

Fast climate simulations are then used to explore the parameter space unconstrained by observations (e.g. atmospheric pressure and composition, rotation period, axis obliquity, ocean fractions, ...)

Modelization of the surface temperature and habitability of a specific exoplanet: Kepler 452 b

Best candidate rocky planet in the habitable zone of a solar-type star

R=1.63 *R*_⊕ *S*=1.1 *S*_⊕

(Jenkins et a. 2015)

Parameter	Value	Notes		
Transit and orbital parameters				
Orbital period P (day)	384.843_0.007	a, b		
Epoch (BJD-2454833)	314.985+0.015	a, b		
Scaled planet radius $R_{\rm P}/R_{\star}$	0.0128-0.0013	a, b		
Impact parameter $b \equiv a \cos i/R_*$	$0.69^{+0.16}_{-0.45}$	a, b		
Orbital inclination i (deg)	89.806+0.134	a		
Transit depth T_{dep} (ppm)	199-18	a		
Transit duration T _{dur} (hr)	10.63+0.53	a		
Eccentricity $e \cos(\omega)$	$0.03^{+0.75}_{-0.39}$	a, b		
Eccentricity $e \sin(\omega)$	$-0.02^{+0.31}_{-0.31}$	a, b		
Planetary parameters				
Radius $R_{\rm P}$ (R_{\odot})	$1.63^{+0.23}_{-0.20}$	a		
Orbital semimajor axis a (AU)	1.046+0.019	a		
Equilibrium temperature Tequ (K)	265-15	c		
Insolation relative to Earth	1.10+0.29	d		

Table 3 Planet Parameters for Kepler-452b

Notes.

a: Based on the photometry.

b: Directly fitted parameter.

c: Assumes Bond albedo = 0.3 and complete redistribution.

d: Based on Dartmouth isochrones.

Quantitative estimates of the habitability of Kepler 452b

Impact of surface atmospheric pressure and atmospheric composition for different models of internal structure

Model	M/M_{\oplus}	g/g⊕	pCO ₂ (ppmv)	p ^b (bar) 2.6
RL	4.3	1.6	10	
RE	4.3	1.6	380	2.6
RH	4.3	1.6	38000	2.6
OL	2.7	1.0	10	1.0
OE 2.7		1.0	380	1.0
OH	2.7	1.0	38000	1.0

Quantitative estimates of the habitability of Kepler 452b

Evolution of surface habitability: the impact of the luminosity evolution of the central star

Searching for life in exoplanets: atmospheric biosignatures

Life metabolizes and dissipates metabolic by-products that can accumulate in the planetary atmosphere acting as biosignature gases

In searching for atmospheric biosignatures we do not worry about what life is, but just on what life does (that is, life metabolizes)

> In this approach it is assumed that life with active metabolism is spread on the planet

Life on the surface has a better chance to interact with the atmosphere and to generate atmospheric biosignatures

Searching for atmospheric biosignatures in exoplanets

The problem of searching for atmospheric biosignatures is two-fold:

(1) enhancing the observational techniques to the point at which atmospheric spectra of terrestrial-type planets can be obtained

(2) identifying molecular species that, from the comparison of the molecular abundances measured in the atmosphere, can be used as reliable biosignatures

Atmospheric biosignatures: chemical disequilibrium

Biological processes are expected to drive the atmosphere out of thermochemical equilibrium

The idea is that gas by-products from metabolic reactions can accumulate in the atmosphere and would be recognized as biosignatures because abiotic processes are unlikely to create a chemical disequilibrium

> Chemical equilibrium calculations are performed using a network of redox chemical reactions, where an electron is added (reduction) or removed (oxidation) from an atom or molecule

Redox chemistry is used by all life on Earth and is more flexible than non-redox chemistry

Example: Earth's atmosphere has oxygen (a highly oxidized species) and methane (a very reduced species) several orders of magnitude out of thermochemical redox equilibrium

Biosignatures in the Earth's atmosphere

In practice it could be difficult to detect both molecular features of a redox disequilibrium pair. Present-day Earth, for example, has a relatively prominent O_2 absorption at 0.76µm, whereas CH₄ absorptions are extremely weak

Evolution of atmospheric biosignatures on Earth

In the course of Earth evolution, different types of gases of biological origin should have been observable, not necessarily as redox pairs

Predicted evolution of atmospheric signatures of an Earth-like planet at 6 different geologic epochs, in absence of clouds. The planet evolves from CO_2 -rich, to CO_2/CH_4 -rich, to a present-day O_2 -rich atmosphere. From Kaltenegger et al. (2007)

Atmospheric oxygen as a biosignature

The history of Earth's atmospheric oxygen shows that oxygen is one of the most promising biomarkers: in absence of a biosphere, O_2 tends to oxidate rocks, decreasing its atmospheric concentration

Caveat: it is not possible to exclude a non-biological origin of oxygen in other planets

The study of biosignatures requires a full calculation of equilibrium abundances of a variety of molecular species

One of the aims of astrobiology is exploring the (potential) distribution of life in the universe

This particular aspect of astrobiology has lead to the definition of The Galactic Habitable Zone (GHZ) Galactic habitable zone vs circumstellar habitable zone

Important differences

 The habitability criteria of the GHZ are based on statistical distributions of Galactic properties and yield <u>probability distributions</u> The results are purely statistical

2)_Some habitability criteria used to definte the GHZ refer to <u>macroscopic life</u> Comparable to animal or plant life on Earth The time scales of life evolution enter in the calculation of GHZ

General concept of the Galactic habitable zone

Mapping astrophysical quantities related to Galactic evolution into probabilities of astrobiological interest

In the original formulation

Gonzalez et al. 2001, Icarus, 152, 185

Metallicity & probability of planet formation

 $Z(x_i,t) \rightarrow \pi_{PF}(x_i,t)$

Supernova rates & probability of life destruction

 $R_{SN}(x_i,t) \rightarrow \pi_{LD}(x_i,t)$

Lineweaver et al. 2004, Science 303, 59

Fig. 3. The GHZ in the disk of the Milky Way based on the star formation rate, metallicity (blue), sufficient time for evolution (gray), and freedom from life-extinguishing supernova explosions (red). The white contours encompass 68% (inner) and 95% (outer) of the origins of stars with the highest potential to be harboring complex life today. The green line on the right is the age distribution of complex life and is obtained by integrating $P_{GHZ}(r, t)$ over r.

Tools for GHZ calculations

- Models of Galactic chemical evolution
 - Radial distribution of metallicities and supernova rates at different epochs of galactic evolution
 - In the original formulation, semi-analytical models have been used
 - More realistic models are also employed:
 Spitoni, Matteucci & Sozzetti, 2014, MNRAS 440, 2588
 Carigi et al. 2013, Rev. Mex. Astron. Astrof., 49, 253
- Galaxy simulations
 - Generation of space-time evolutionary maps of Galactic habitability by means of N-body simulations of galaxies
 - Example:

Forgan et al., 2015, arXiv:1511.01786

Both tools start to be applied also to nearby galaxies

– M31, M33

Open issues in GHZ calculations

- Probability of existence of terrestrialtype planets as a function of stellar metallicity
 - This probability is related to the metallicity-dependence of the frequency of hot jupiters
 - <u>Hot jupiters</u>, which are frequent at high metallicity, <u>tend to inhibit the</u> formation of terrestrial-type planets
 - In addition, the process of rocky planet formation would be inhibited at low metallicity
 - The resulting probability of harboring terrestrial-type planets would experience a rise followed by a decrease with metallicity

Open issues in the definition of the GHZ

- Still not clear the relationship between metallicity and probability of formation of terrestrial-type planets
 - Exoplanet statistics will clarify this point in the future, when more data will be available for terrestrial planets at very low metallicities
- Ambiguous role of supernovae explosions in the context of life evolution Only extremely close supernovae can sterilize a planet Supernovae may trigger life evolution, leading to the formation of new species
- The classic criteria that define the GHZ need to be refined and it is desirable to find new criteria

On the role of SN explosions

Resetting the evolution to intelligent life at each SN destructive event
 Even if SNe do not fully sterilize the planet, one can assumed that the evolution is
 resetted (e.g., restarting from unicellular life) at each critical SN event
 Then the probability of forming intelligent life is calculated, using Monte Carlo
 methods, only during the time intervals devoid of SN destructive events

Morrison & Gowanlock (2015)

SETI

Search for extraterrestrial intelligence with new astronomical facilities: SKA (Square Kilometer Array)

