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Preface

This Ph.D. Thesis is devoted to the derivation of cosmological constraints

by using clusters of galaxies as probes.

Clusters of galaxies provide potentially powerful means to measure

the growth of cosmic structures, as well as excellent astrophysical labo-

ratories. As such they have played an important role in establishing the

current cosmological paradigm.

The number density of nearby galaxy clusters provides constraints on

the amplitude of the power spectrum while its evolution is directly re-

lated to the growth rate of density perturbations and thus to the amount

of Dark Energy (DE) and Dark Matter (DM) at a given redshift. Ad-

ditionally, distribution of clusters (i.e., correlation function and power

spectrum) provides direct information on the shape and amplitude of the

power spectrum of density perturbations and the evolution of clustering

properties is again sensitive to the growth rate of such perturbations. A

crucial aspect concerning the possibility of using clusters as cosmologi-

cal tools regards the measurement of their mass and how this mass can

be related to observational quantities (i.e., X-ray temperature, Sunyaev-

Zel’dovic signal, velocity dispersion of member galaxies, strong and weak

lensing effects).

In order to be able to constrain cosmological parameters, we need to

determine the evolution of the space density of clusters, and this requires

counting the number of clusters of a given mass per unit volume at dif-

ferent redshifts. In this respect having an efficient method to find clusters

over a wide redshift range, and an observable estimator of the cluster

mass is not enough. A robust method to compute the selection function

i.e. the survey volume within which clusters are found, is also essential.

The cosmological constraints obtained from clusters so far have been

mostly derived from X-ray observations and, more specifically, from rel-

atively small ROSAT- based samples, containing ∼ 100 clusters at z < 1.

Future large galaxy cluster surveys, like the one to be carried out with

13
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the forthcoming eROSITA1, satellite will increase by orders of magni-

tude the statistics of detected clusters out to z ∼ 1, while future high-

sensitivity wide-area telescopes, such as the approved optical/near-IR

EUCLID2 telescope or the proposed Wide Field X–ray Telescope (WFXT3),

will have the capability of measuring mass proxies for such clusters out

to z ∼ 1.5. In view of future large surveys to be carried out with the next

generation of telescopes, it is crucial to quantify the constraining power

of such surveys and understand the possible limiting factor in their cos-

mological exploitation.

This Thesis is divided into five Chapters. Chapter 1 presents a concise

review about the general framework of ΛCDM cosmological model and

the main aspects of hierarchical cosmic structure formation. We will fo-

cus on the cosmological tests provided by galaxy clusters that have been

used in the rest of this Thesis. We present the statistical properties of

the perturbation density fields, describing how the cluster distribution

changes according to the underling Dark Mater scenario, and how this

distribution can be used as a geometrical test on the Universe evolution.

We describe the sensitivity of the cluster mass function to cosmological

parameters, and we highlight the differences and the limits of the most

commonly used calibration of the mass function as obtained from N-body

simulation. Then, we summarize the main classes of non-standard cos-

mological models, and we briefly describe the primordial non-Gaussian

density fluctuation scenario. Finally, the current constraints on cosmolog-

ical parameters as obtained from cluster analysis, are summarized.

In Chapter 2, the observational methodology used to built samples of

galaxy clusters in the optical/near-IR, in the X-ray and in the Microwave

bands is reviewed. We highlight the principal advantages and the disad-

vantages of clusters observation in each of these three bands. We summa-

rize how clusters are detected and identified, and how we can determined

the selection function of a specific survey. Finally, we discuss the principal

methods to estimate masses of galaxy clusters.

The original work of my Ph.D. project can be dived in two main parts

which constitute the remaining two Chapters.

In Chapter 3, we present results on forecasts for different parametriza-

tions of the DE equation of state from WFXT surveys. This analysis is

1http://www.mpe.mpg.de/heg/www/Projects/erosita/index.php
2http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
3http://www.wfxt.eu/
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based on computing the Fisher-Matrix for number counts and large-scale

power spectrum of clusters. The Appendix A, is dedicated to the defi-

nition of the Fisher Matrix to the we explanation of its statistical proper-

ties. Based on the so-called self-calibration approach, and including prior

knowledge of cosmological parameters to be provided by CMB observa-

tions with the Planck satellite in our analysis, in Chapter 3, we derive

constraints on nine cosmological parameters and four parameters, which

define the relation between cluster mass and X-ray flux. This study on

DE models is performed with the main purpose of dissecting the cosmo-

logical information provided by geometrical and growth tests, which are

both included in the analysis of number counts and clustering of galaxy

clusters. We compare cosmological constraints obtained by assuming

different levels of prior knowledge of the parameters which define the

relation between cluster mass and X-ray observables. This comparison

demonstrates the fundamental importance of having a well calibrated

observable-mass relation and, most importantly, its redshift evolution.

These results will be published in Sartoris et al. (2012, MNRAS).

With the Fisher Matrix methodology developed in this work, we also

provide forecasts for constraints on the DE for the cluster survey to be

carried out with the optical near-infrared EUCLID satellite, which has

been recently approved by the European Space Agency (ESA). This anal-

ysis has been used for the definition of the scientific case of this mis-

sion, and have been included in the EUCLID mission definition study

(Laureijs et al., 2011).

We extend the above analysis by also computing forecasts for con-

straints on deviations from Gaussian distribution of primordial density

perturbations expected from the WFXT experiment. Because of the scale

dependence of large-scale bias induced by local-shape non-Gaussianity,

we find that the power spectrum provides strong constraints on the non-

Gaussianity parameter, fNL, which complement the stringent constraints

on the power spectrum normalization, σ8, from the number counts. These

results have been published in Sartoris et al. 2010, MNRAS, 407, 2339.

In Chapter 4, we present the results derived from the analysis of nine

clusters at redshift z ≥ 0.8 that belong to the ROSAT Deep Cluster Survey

(RDCS).

Despite the steady increase of the number of detected clusters at high

redshift, the RDCS survey until recently was the deepest ROSAT survey

available. It includes a sample of 107 clusters out to z = 1.3, all confirmed

by optical and spectroscopic observations. Nine of these clusters are at



16

redshift z ≥ 0.8, and for most of them, deep follow-up observations pro-

vided by Chandra and Hubble Telescope images have been collected in the

last years, as well as spectroscopic campaigns with the VLT and Keck tele-

scopes. Thanks to these deep observations all these high-z RDCS clusters

but two have mass measurements from X-ray temperature and for five of

them weak lensing masses are also available.

After developing a fitting algorithm based on the Montecarlo Markov-

Chain (MCMC) and the maximum likelihood criterion, and by using the

available mass measurements for RDCS clusters, we present the mass

function for redshift 0.8 ≤ z < 1.3 for the concordant ΛCDM cosmol-

ogy. With the same MCMC tool, using current lower redshift results as

a prior, we study the increment of the constraining power of clusters

on the cosmological parameters, contributed by such high redshift clus-

ters. This analysis demonstrate the key relevance of high redshift clusters

to extend the redshift range over which the evolution of perturbation

growth is studied. We check the consistency between the prediction at

z > 0.8 of the ΛCDM model based on cluster observation at lower red-

shift, and the number density of clusters observed in the high-z RDCS

sample. In our analysis we take into account the errors in the calibration

of the observable-mass scaling relations. Moreover, we consider uncer-

tainties in the computation of the survey volume originated from a X-ray

flux limited (i.e. not mass limited) sample. The results of this analysis

will be published in Sartoris et al. (2012, in preparation).

During the last decade, a significant improvement in the detection

and study of massive clusters up to z ∼ 1 and beyond has been done,

thanks to Chandra and XMM observatories and thanks to observations

of the Sunyaev-Zel’dovic effect carried out by the Planck Satellite4, and

by dedicated ground-based millimiter telescopes (South Pole Telescope5,

Atacama Cosmology Telescope6). Because the cluster mass function is

particularly sensitive to the cosmological parameters at high masses and

high redshift, using the same procedure defined in the RDCS analysis,

we calculate the likelihood of finding a cluster with a given mass and

redshift within its survey volume according to the mass function in order

to test any cosmological model. In order to use this test one needs a

precise measure of the cluster mass and a full accounting of the effects of

errors in the calibration of the mass-observable scaling relations, as well

4http://www.rssd.esa.int/index.php?project=Planck
5http://pole.uchicago.edu/
6http://physics.princeton.edu/act/
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as a complete understanding of the survey volume within the cluster has

been found.

In the last Chapter, we summarize the results obtained in this Thesis.

We empathize which are the challenge for clusters to be used as power-

ful probes in the era of precision cosmology, focusing on the importance

of having a well calibrated theoretical mass function on a wide range of

masses, and for non-standard cosmological models. From an observation

point of view, future experiments will increase the number of detected

clusters up to a few thousand or even more. In order to provide robust

cosmological constraints, we stress the importance of having deep high-

sensitive observations for a large subsample of the detected clusters to

study the evolutionary trends in a number of independent physical pa-

rameters including the cluster mass, the gas density and temperature, the

underlying galactic mass, and star formation rates. The combination of

studies carried out with cluster sample in different bands will further help

in reducing the impact of the systematic errors on the final constraints.
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Chapter 1

Clusters of galaxies as

cosmological probes

Clusters of galaxies are a particularly rich source of information about

the underlying cosmological model, making possible a number of critical

tests. These objects allow us to constrain the value of the parameters

that describe cosmological models and to distinguish among different

models that predict different evolution or structure formation history of

the Universe. The number density and the distribution of galaxy clusters

are highly sensitive to specific cosmological scenarios and directly trace

the process of structure formation in the Universe.

In this Chapter the general framework of standard ΛCDM cosmo-

logical model will be reviewed. Then, the main aspects of hierarchical

structure formation scenarios will be introduced focusing on the cosmo-

logical tests provided by galaxy clusters that have been used in the rest of

this Thesis. Furthermore, we will briefly describe the main classes of non-

standard cosmological models, and the primordial non-Gaussian density

fluctuation scenario. The last Section of this Chapter summarizes the

current constraints on cosmological parameters as obtained from cluster

analysis. A more complete treatment of cosmological models and struc-

ture formation scenarios can be found in classical textbooks as Dodelson

(2003); Coles & Lucchin (2002); Peacock (1999); Peebles (1993); Weinberg

(1972).
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20 CHAPTER 1. CLUSTERS AS COSMOLOGICAL PROBES

1.1 Cosmological Framework

In 1998, two teams (Riess et al., 1998; Perlmutter et al., 1999) indepen-

dently presented evidence that the Universe undergoes a phase of accel-

erating expansion. By studying type Ia Supernovae (SN Ia) data in the

redshift regime 0.2 < z < 0.8, they showed that the luminosity distances

of observed SN Ia tend to be larger than those predicted in a flat mat-

ter dominated Universe. These observations point to a new Dark Energy

(DE) density or negative pressure in the vacuum perceived by gravita-

tional interactions. The simplest way to describe these results, in the con-

text of the current cosmological theories was the introduction of a small

positive value for the cosmological constant Λ in Einstein equations of

General Relativity.

Over the past decade, subsequent observations confirmed that the

Universe entered the epoch of cosmic acceleration after the matter - dom-

inated era. These observations included more detailed studies of Su-

pernovae; for instance, two large ground-based surveys, the SNLS (Su-

pernova Legacy Survey) (Astier et al., 2006) and the ESSENCE (Equation

of State: Supernovae Trace Cosmic Expansion) survey (Miknaitis et al.,

2007), measured light curves for several hundred SNe Ia over the redshift

range z ∼ 0.3− 0.9. Moreover, independent evidences of accelerating

expansion were provided by clusters of galaxies (e.g. Allen et al., 2004,

2008), large-scale structure (LSS) (e.g. Eisenstein et al., 2005) and the cos-

mic microwave background radiation (CMB) (e.g. Komatsu et al., 2011).

After the accelerated expansion of the Universe has been confirmed,

the Lambda Cold Dark Matter scenario (ΛCDM, Perlmutter et al., 1999)

has been adopted as the concordance standard model. According to this

model, the Universe is composed of radiation, baryons, a non collisional,

non baryonic matter, called Dark Matter (DM), and a form of energy

density with negative pressure, called dark energy (DE).

The standard model is based, among the others, on the validity of the

following arguments:

1. The Copernican Principle: on scale larger then 100− 200 Mpc the Uni-

verse can be considered as homogeneous and isotropic. According

to this assumption, the space-time metric is the Friedman-Robertson-

Walker (FRW) one:

ds2 = c2 dt2 − a2(t)

[

dr2

1− k r2
+ r2

(

dθ2 + sen2θ dφ2
)

]

(1.1)
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Figure 1.1: Observed magnitude versus redshift is plotted for SNe Ia mea-

sured by the Supernova Cosmology Project (Perlmutter et al., 1999), the High-z

Supernova Team (Riess et al., 1998) and (in the inset) by Hamuy et al. (1995)

for nearby SNIa. The four curves show from top to bottom four cosmologi-

cal models: Ωm = 0.3,ΩDE = 0.7; Ωm = 0,ΩDE = 0; Ωm = 0.3,ΩDE = 0;

Ωm = 1,ΩDE = 0. Figure from Perlmutter (2003).



22 CHAPTER 1. CLUSTERS AS COSMOLOGICAL PROBES

where r, θ, φ are the comoving spatial coordinates, t is time, and

the expansion is described by the cosmic scale factor, a(t) (by con-

vention, a = 1 ≡ a0 today). The quantity k is the curvature of

3-dimensional space: k = 0 corresponds to a spatially flat geometry,

k > 0 to the positive curvature (3-sphere), and k < 0 to the negative

curvature. In the ΛCDM model, the geometry of the Universe is

Euclidean.

2. The Standard Model of particle physics that describes the properties

of the the subatomic particles and how the dynamic of such parti-

cles is mediated by the electromagnetic, weak, and strong nuclear

interactions.

3. The General Theory of Relativity (GR) which describes the gravita-

tional attraction between masses as a result of space-time being

curved by matter and energy. This relation between the geome-

try of a 4-dimensional space-time manifold with its material and

energy content is described by a set of ten equations, the Einstein

field equations (EFE):

Gαβ = Rαβ −
1

2
R gαβ =

8πG

c4
Tαβ + Λ gαβ (1.2)

In this equation α, β = 0, 1, 2, 3, Gαβ is the Einstein tensor, Rαβ is

the Ricci tensor, R is the Ricci scalar, gαβ is the metric tensor, and

Λ is the cosmological constant, proposed by Einstein to achieve a

stationary Universe. Tαβ is the energy-momentum tensor, and de-

scribes the matter content of the Universe. For a perfect fluid, Tαβ

can be expressed as:

Tαβ = (ρ + p) uα uβ + p gαβ (1.3)

where uα and uβ are the fluid four-velocity, ρ and p are respectively

the energy density and the pressure in the rest frame of the fluid.

4. The Inflation model which is the theorized accelerated expansion of

the early Universe driven by a negative-pressure vacuum energy

density right after the Big Bang, that amplified quantum fluctua-

tions of the inflation field to produce the seed fluctuations that will

evolve according to the standard formation scenario. Moreover, as

a consequence of the expansion, all of the observable Universe orig-

inated in a small causally connected region.
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By including the FRW metric (Eq. 1.1) in the GR equation (Eq. 1.2), we

obtain the Friedman equations that describe the expansion of the space in

homogeneous and isotropic models of the Universe within the context of

general relativity. From the 00 component and from the trace of Einstein

field equations respectively, the following equations are derived:

ȧ2 =
8πG

3
ρ a2 +

1

3
c2 Λ a2 + k c2 , (1.4)

ä2 = −4πG

3

(

ρ +
3p

c2

)

a+
1

3
c2 Λ a . (1.5)

Here, dots represent the time derivatives of the scale factor a(t), ρ is the

density, p is the pressure, Λ is the Einstein’s cosmological constant, and k

is the space time curvature constant (k = 0 in ΛCDM model). Assuming

the equation of state of a perfect fluid, p = w ρ c2, the density of each

of the major energy components changes with the expansion as ρi(a) ∝

a−3(1+w). Here w = 0 for the matter (DM and baryonic) component, ρm,

w = 1/3 for the radiation component, ρr, and w < −1/3 for the Dark

Energy, ρDE.

The ratio of the expansion velocity and the scale factor defines the

Hubble parameter H(a), i.e. the fractional increase of the Universe per

unit time:

H(a) ≡ ȧ

a
. (1.6)

All energy densities can be transformed into dimensionless parameters by

stating them in units of the critical energy density ρcr. The latter quantity

is defined as the total energy density that results from Eq. 1.4 in a flat

global geometry of the Universe, with Λ = 0. At z = 0 the value of ρcr is:

ρcr =
3H2

0

8πG
= 1.879× 10−29 h2M⊙Mpc−3 (1.7)

Here, the value of the Hubble constant at z = 0, H0 is parametrized as

H0 = h× 100 km s−1Mpc−1, where h is a constant. Thus, the dimension-

less energy components as measured today are:

Ωm ≡ ρm
ρcr

; ΩDE ≡ ρDE

ρcr
=

Λc2

3H2
0

; Ωr ≡
ρr
ρcr

; (1.8)

and the parameter that describe the curvature of the Universe is defined

as:

Ωk ≡ 1− Ωm − ΩDE − Ωr . (1.9)
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If we define the redshift as z = 1/a − 1, by combining Eqs. 1.4, 1.6 and

1.8, the Hubble expansion history equation is obtained:

H2(z) = H2
0E

2(z)

= H2
0 [Ωm (1+ z)3 + ΩDE (1+ z)3 exp

{

3
∫ z′

0

w(z′)
1+ z′

dz′
}

+Ωr (1+ z)4 + Ωk (1+ z)−2]. (1.10)

According to the ΛCDM prescription, the DE equation of state (EoS) pa-

rameters w is equal to −1. However, a plethora of models, characterized

by different DE EoS that evolve with evolution, have been proposed (see

Section 1.8). The commonly used parametrization of the DE EoSis:

wDE(a) = w0 + wa (1 − a) = w0 + wa

(

z

1+ z

)

, (1.11)

has been originally proposed by Linder (2003), and has been adopted in

the Dark Energy Task Force reports (DETF; Albrecht et al., 2006) to assess

the constraining power of different cosmological experiments.

Evolution of energy densities with redshift, Ωi, are:

Ωi(z) = Ωi(z = 0) (1+ z)3(1+w) [H(z)/H0]
−2 . (1.12)

In Figure 1.2 it is shown the dependence of Ωm(z), ΩDE(z) and Ωr(z)
on the redshift for different set of values of present-day cosmological

parameters. Because these densities scale differently in time, two impor-

tant redshifts can be defined. The first is the transition from a radiation-

dominated Universe to a matter-dominated one, this transition occurs at

the so called equivalence redshift:

zeq = 2.38× 104 Ωm,0 h
2 (1.13)

The second transition occurs when the Dark Energy term starts to dom-

inate expansion history of the Universe. In Figure 1.2 it is shown how

much the redshift of this transition change for different values of Ωm,

ΩDE and of the Dark Energy equation of state parameter (wDE). The red-

shift of the transition between matter and DE dominated Universe lie in a

range that can be well explored by galaxy clusters, moreover the values of

ΩDE, Ωm, and wDE parameters influences the structure formation history

and thus the properties of the cluster population as we will see in the

next Section.
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Figure 1.2: Different types of curves represent the dependence of Ωm(z) (green

curves), ΩDE(z) (magenta curves) and Ωr(z) (blue curves) on redshift for various

sets of present-day cosmological parameters: ΩDE,0 = 0.72; Ωm,0 = 0.28; wDE,0 =

−1 (solid curves) ΩDE,0 = 0.72; Ωm,0 = 0.28; wDE,0 = −0.5 (dotted curves)

ΩDE,0 = 0.8; Ωm,0 = 0.2; wDE,0 = −1 (dot-dashed curves). Adapted from Voit

(2005).
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1.2 Cosmic Structure Formation

In the previous Section, we derived the equations that describe the evolu-

tion of the Universe and of its components in the contest of the standard

ΛCDM model. In this Section we will review the basic concepts of linear

cosmological perturbation theory and the structure formation scenarios

(for a comprehensive treatment of the subject see Dodelson, 2003).

According to the standard prescription, we assume the gravitational

instability model proposed by Jeans in the early 1900s. Jeans demon-

strated that an overdense region, if its pressure is negligible compared to

the gravitational strength, accrets material from its surroundings until the

overdensity is strong enough to separate from the background expansion.

Then, it becomes unstable and finally collapses into a gravitational bound

system. If the perturbations are small (δX ≪ X), they can be studied in

the linear regime.

If we model the Universe as a multicomponent fluid, we can consider

each fluid described by the density ρi, the pressure pi and the velocity

vα in a gravitational potential Φ, adopting the space coordinates rα. Such

fluid evolves according to the standard equations for a self gravitating

medium. The continuity equation:

∂ρ

∂t
+ ∂α (ρ vα) = 0 (1.14)

which describes the mass conservation. The Euler equation

∂vα

∂t
+ vβ ∂βvα +

1

ρ
∂α p + ∂α Φ = 0 (1.15)

which gives the momentum conservation, and the Poisson equation

∂2Φ = 4πGρ (1.16)

which specifies the Newtonian nature of the gravitational force. In the

above equation ∂2 = ∂α∂α is the associated Laplacian operator. This sys-

tem of equations is valid inside the Hubble radius1 for non-relativistic

components.

1The Hubble radius is the proper distance that corresponds to the speed of the light

c: RH(z) = c/H(z). This radius represents the region within it is possible to exchange
information.
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We assume a barotropic fluid where p = p(ρ) and we consider small

perturbations on the background solution:

ρ = ρ0 + ρ1; p = p0 + p1; vα = vα
0 + vα

1 ; Φ = Φ0 + Φ1 (1.17)

where ρ1, p1, vα
1 , Φ1 are the perturbation at first order with spatial and

temporal dependence. Because it is advantageous to employ dimension-

less variables for first order quantities, we define the density contrast

δ ≡ ρ(x)− ρ̄

ρ̄
(1.18)

where x is the comoving coordinate (rα = axα), ρ(x) is the matter density

field, which is a continuous function of the position vector x, ρ̄ (ρ̄ ≡ ρ0)

is its average density computed over a sufficiently large (representative)

volume of the Universe. By including Eq. 1.17 in the fluid Eqs. 1.14, 1.15

and 1.16, in a comoving coordinate frame, the liner evolution equation of

the density contrast is:

δ̈ + 2Hδ̇ = δ

[

4πGρ̄ − c2sk
2

a2

]

(1.19)

where dots represent the derivatives with respect to the time. This equa-

tion has the form of a damped wave equation where the term with the

Hubble expansion H (Eq. 1.10) acts as a friction force (called Hubble drag)

and always suppress the growth of δ. The right hand side of Eq. 1.17

describes the conflict between pressure support and gravity. Here cs is

the speed of sound, k is the curvature and a is the scale factor.

The solution of the above equation can be cast in the form:

δ(x, t) = δ+(x, ti)D+(t) + δ−(x, ti)D−(t) (1.20)

where D+ and D− describes the growing and decaying modes of the

density perturbation, respectively. For a collisionless fluid in a Universe

with Ωm < 1 and ΩDE = 1− Ωm like the ΛCDM one, the expression for

the growing mode of perturbations is given by:

D+(z) =
5

2
ΩmE(z)

∫ ∞

z

1+ z′

E3(z′)
dz (1.21)

where E(z) = H(z)/H0 (Eq. 1.10). In Figure 1.3 we show the sensi-

tivity of factor D ≡ D+ to the cosmological parameters Ωm, ΩDE, and
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Figure 1.3: Different curves represent the growth factor D(z) (Eq. 1.21) normal-

ized at 1 for z = 0 for three different set of cosmological parameters: ΩDE,0 =

0.72;Ωm,0 = 0.28;wDE,0 = −1 (solid magenta curve) ΩDE,0 = 0.72;Ωm,0 =

0.28;wDE,0 = −0.5 (dotted blue curve) ΩDE,0 = 0.8;Ωm,0 = 0.2;wDE,0 = −1

(dot-dashed green curve).

wDE. Any observational quantity that sample the evolution with redshift

of density perturbations corresponds to a sensitive probe of cosmolog-

ical parameters. Being conceptually different to those provided by the

geometrical tests based on luminosity and angular-size distances, such

test can provide important complementary information on the underling

cosmological model.

1.2.1 The Top-hat Spherical Collapse

The spherical top-hat model is the only case for which the collapse of

an overdense region can be treated analytically. We consider a spheri-

cal region with radius R and an overdensity δ (Eq. 1.18) embedded in a

background field with constant mean density ρ̄. This approach is based

of the validity of the Birkhoff’s theorem, which states that a closed sphere
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within a homogeneous Universe evolves independent of its surroundings,

i.e. as if no external forces are exerted on the sphere. This implies that

any overdense region of the Universe can be conceived as a homogeneous

mini-Universe with the evolution driven by the local density parameters

of the region under consideration. We stress that the spherical collapse

model do not consider external tidal forces and is based only on the grav-

itational physics. According to Birkhoff’s theorem, the evolution of this

region can be considered independent of the background field and can be

described by the Newtonian approximation of the first Friedmann equa-

tion (Eq. 1.4), i.e. with vanishing pressure and zero cosmological constant

term.

In analogy to a closed Universe, this finite region will expand up to a

maximum radius Rmax at turn-around time tturn. After reaching the max-

imum expansion, the perturbation evolves by detaching from the gen-

eral Hubble expansion and then re-collapses in a time-symmetric fashion

at time tcol = 2 tturn. Actually, the overdense region will not collapse

to a point but stabilize in a bound dynamic equilibrium state at radius

Rvir = Rmax/2 once the Virial equilibrium condition (2 Ekin + Epot = 0) is

satisfied supported by the velocity dispersion of DM particles.

In the case of an Einstein-de Sitter cosmology (Ωm = 1), at collapse

time tcol ≡ tvir, the overdensity increased to its final equilibrium value of:

∆vir ∼ 178 . (1.22)

This value explains why an average overdensity of 200 times the critical

density ρcr(z) (Eq. 1.7) is usually considered as typical for a DM halo

which has reached the condition of virial equilibrium.

In comparison, the linear extrapolation of the density contrast accord-

ing to Eq. 1.21 at tvir yields

δc ≡ δ+(tvir) ≃ 1.69 , (1.23)

emphasizing the onset of the non-linear regime and the break-down of

the linear approximation during object collapse. The linear extrapolated

density contrast at tvir characterized the mass function of virialized halos.

It gives the overdensity that a perturbation in the initial density field must

have to end up in a virialized structure (see Section 1.5).
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1.3 Statistical properties of the perturbation den-

sity field

According to the definition of δ(x, z) (Eq. 1.18), the spatial average at a

given redshift requires 〈δ(x, z)〉 = 0.

The next momentum of the matter density probability distribution,

the variance, is:

〈δ(x1, z) δ(x2, z)〉 = ξ(x1, x2, z) = ξ(|x1 − x2|, z) = ξ(r, z) (1.24)

where we have defined the density auto-correlation function as the excess

probability of finding masses at separation r:

dP = ρ̄2 [1+ ξ(r)] dV1dV2 (1.25)

The function ξ depends only on the distance between the coordinates x1
and x2, because we have assumed the Universe to be statistical isotropic.

If the initial density field is described with a Gaussian distribution, as

derived from a class of standard inflation models, the mean and the vari-

ance alone completely describe the matter density distribution; in Section

1.9 we will discuss what happens to the structure evolution history if we

relax this assumption of initial Gaussian fluctuations.

The density distribution of matter can be defined also in the Fourier

space, where it can be described by the superposition of planes waves,

which evolve independent one of each other during linear evolution. The

Fourier Transform of δ (Eq. 1.18) is

δ̃(k, z) =
∫

d3x eik·xδ(x, z) (1.26)

When we can calculate the variance of δ̃(k, z), we obtain:

σ2(z) = 〈δ̃(k, z) δ̃∗(k′, z)〉 =
1

2π2

∫ ∞

0
P(k, z) k2 dk (1.27)

where P(k, z) is the power spectrum of density fluctuations as a function

of redshift. Similar to ξ(r, z), which is only a function of the modulus

of the distance vector, P(k, z) depends only on the absolute value of the

wave-number, k = |k|.
We want to study a class of observable structures of mass M which

arise from the collapse of initial perturbations of size R, thus it is useful

to introduce the smoothed density field:

δR(k, z) = δM(k, z) =
∫

δ(k′, z)WR(|k − k′|)dk′ (1.28)
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where WR is the window function which weights the contribution from

different spatial points to the density distribution. By convolving δ(k, z)
with WR, we smooth out all the fluctuations at scale below R. Therefore,

the variance of the fluctuation field at scale R is defined as:

σ2
R(z) = 〈δ2R〉 = σ2

M =
1

2π2

∫

dk k2 P(k, z)W2
R(k). (1.29)

The shape of the window function that it is used in this Thesis is the

top-hat one:

W̃R(k) =
3 [sin(kR) − k R cos(kR)]

(k R)3
(1.30)

for which the relation between mass scale and smoothing scale is M =
4π
3 R3ρ̄.

1.4 Matter Power spectrum as a cosmological test

In the previous Section we introduced the power spectrum P(k). In this

Section we will describe it as the main tool for the statistical description

of the large-scale structure and we will focus on his dependence on the

underling cosmological model.

The overall shape and features of the power spectrum can be theoreti-

cally derived, however the normalization of the power spectrum has to be

determined with observations. The normalization of the power spectrum

is parametrized through the quantity σ8, which is defined as the vari-

ance (Eq. 1.29) computed for a top-hat window having comoving radius

R = 8 h−1Mpc ≡ R8. The choice of R8 was motivated by results of early

galaxy surveys (Davis & Peebles, 1983) finding δgal(R8) ≃ δNgal/Ngal ≃
δM/M ≃ 1, i.e. the variance of galaxy number density in spatial bins of

radius R8 is about unity. A top-hat sphere with such radius contains a

mass M ∼ 5× 1014 M⊙, which is the typical mass of a moderately rich

galaxy cluster. Hence, σ8 determines the height of density peaks and con-

sequently the object abundance. Moreover, the mass variance of order

unity on the R8 scale marks the transition region from the linear regime

with δ . 1, to the non-linear regime at R ≪ 8 h−1Mpc.

The power spectrum is usually described by a power law P(k) ∝ kns .

Thus, the second important parameter related to the power spectrum is

the index ns of the initial power spectrum. This index is observationally



32 CHAPTER 1. CLUSTERS AS COSMOLOGICAL PROBES

confirmed (Spergel et al., 2007) to be very close to the scale-free Harrison-

Zel’dovich spectrum of primaeval adiabatic fluctuation (i.e. ns = 1),

which is predicted by inflationary models.

Under the linear evolution assumption in the cosmic structure for-

mation model, each mode δ(k, t) evolves independently and hence the

evolution density is a linear function of the initial conditions. If the initial

conditions were Gaussian, then so are the evolved quantities, but with

a different power spectrum. The growing-mode solution is expected to

dominate after sufficient evolution, hence the power spectrum at a given

redshift is described by:

P(k, z) = T2(k)D2(z) Pin(k) (1.31)

where D(z) is the linear growth mode of perturbations (Eq. 1.21), and

Pin(k) is the initial power spectrum described by P(k) = A kns . The am-

plitude A of the power spectrum at z = 0 is directly linked to σ8. The

quantity T(k) is the transfer function (Eisenstein & Hu, 1998).

Different DM scenarios imprint the shape of the power spectrum in

very different ways. There are two major non-bayonic structure formation

scenarios, the Hot Dark Matter (HDM) and the Cold Dark Matter (CDM)

one, and each of them predicts a different cut-off on the power spectrum

shape.

According to the standard model, the matter component in the Uni-

verse is dominated by CDM. Such particles decouple when they are in a

non-relativistic regime (znr ≪ zeq), thus the maximum damping scale is

too small (≪ 1Mpc) to be of any cosmological relevance. Perturbations

between horizon crossing and equipartition experience a weak growth,

thus the density contrast increases as we move to smaller scale and the

power spectrum has more small-scale power.

In the HDM scenario, is present an additional suppression in the

power spectrum shape that derives on the free streaming length: this

depends on the thermodynamic state of particles during the decoupling.

Thus, all the perturbations, on a scale equal to the distance that a particle

could reach from the decoupling till now, were erased. This has the effect

of a sharp cut-off in the power spectrum (see left panel of Figure 1.4 ) and

prevents the formation of the structures that we observe in the Universe.

The HDM nowadays is no longer considered a viable model for the DM,

however a small admixture of HDM could be present in the total amount

of DM (e.g. Saito et al., 2011).
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Figure 1.4: Left panel: Matter power spectra for Cold+Hot DM model. Dotted

cyan and blue curves represent the power spectra for different amounts of the hot

component, Ων = 0.1 and Ων = 0.2 respectively, provided by one massive neu-

trino species Ων = 0.1 The dot-dashed green curve represent the power spectrum

with Ων = 0.1 provided by three massive neutrino species. Moreover a pure

CDM model is shown for comparison (magenta solid curve). Right panel: Mat-

ter power spectra for CDM model with Ωm = 0.2 (dotted blue curve), Ωm = 0.4

(dot-dashed cyan curve), and Ωm = 0.28 (magenta curve). The latter corresponds

to the fiducial value of the ΛCDM model (Komatsu et al., 2011). In both panels

all the unspecified cosmological parameters are set to the reference value of the

ΛCDM model according to Komatsu et al. (2011). These plots are based on the

prescriptions for the transfer functions provided by Eisenstein & Hu (1998) for

the CDM models and by Eisenstein & Hu (1999) for the models with massive

neutrinos.
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The transfer function, introduced in Eq. 1.31 , contains scale-imprinting

evolutionary effects that alter the original linear form of the initial power

spectrum. The first imprinted scale is keq, the wavevector corresponding

to the comoving scale of the Hubble radius at the epoch of transition from

a radiation-dominated Universe to a matter dominated one (zeq, Eq. 1.13

). This scale directly influences the present-day power spectrum shape. In

the radiation epoch perturbations inside the horizon in the collisionless

component experience a stagnation effect, called Meszaros effect, because

the expansion rate in the radiation-dominated era is shorter than the dy-

namical time-scale of the perturbations. Since perturbations on small

scales (k > keq) are suppressed in amplitude, the structure growth can

only proceed on scales larger than the equivalence one (k < keq), beyond

the causal influence of the radiation pressure. Once a perturbation mode

crosses the Hubble radius, further growth is suppressed and its ampli-

tude almost freezes at the value it had at horizon crossing. As shown in

Figure 1.5, the Meszaros effect causes a break in the shape of the transfer

function. The transfer function is unity for k ≪ keq, while T(k) ∝ k−2 for

k ≫ keq. Since keq is defined as

keq ≡ (2Ωm H2
0 zeq)

1/2 (1.32)

in the CDM paradigm, if the amount of DM is higher also the equiva-

lence redshift is higher and, thus, the perturbations are suppressed by the

Meszaros effect earlier because they enter the horizon when it is smaller.

Hence the pick of matter power spectrum shifts at higher k (Borgani et al.,

1997) for higher Ωm as it is shown in the right panel of Figure (1.4).

On small scale, and high wave-number, the transfer function shape is

affected by the dissipative effects due to the interaction between baryon

and photons in the pre-recombination era (we assume zrec < zeq). Adi-

abatic perturbations in the photon-baryon plasma suffer from collisional

damping when z ∼ zeq because, as they approach decoupling time, the

photon mean free path increases and photons can diffuse from overdense

to underdense regions smoothing out any inhomogeneities in the plasma.

This effect is called Silk damping (Silk, 1976) and the corresponding wave-

number is fitted by the approximation:

kSilk ≃ 1.6
(

Ωb h
2
)0.52 (

Ωm h2
)0.73

[

1+
(

10.4Ωm h2
)−0.95

]

Mpc−1 (1.33)

In Figure 1.5 it is shown how the presence of baryons damps the shape

of the transfer function.
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Another effect that is imprinted in the transfer function are the Bary-

onic Acoustic Oscillations (BAOs). This feature appears below the sound

horizon scale, as a consequence the matter power spectrum exhibits a

series of declining peaks. Baryons fall in the DM potential well and un-

dergo both the attraction of DM gravity and their own pressure that act in

the opposite direction. Such behaviour can be described with a harmonic

oscillator, and makes the BAOs appear in matter power spectrum.

The presence of BAOs provides the same kind of information as the

oscillations present in the CMB photon power spectrum, but we observe

this information at a lower redshift. The position of the wiggles is related

to the amount of DM and baryons: as Ωm h2 increases, first peaks are

shifted to higher k and, moreover, the valleys and peaks become slightly

narrower. The amplitude of the wiggles is also related to the amount of

matter mainly because the oscillations grow stronger by increasing the

baryon fraction.

1.5 The mass function

The mass function, n(M, z), is defined as the number density of virial-

ized halos with mass in the range [M,M+ dM], found at redshift z in a

comoving volume element.

Mass definition. The cluster mass function inevitably depends on how

one defines cluster mass. The mass

M∆c ∝ ρc(z)∆c R
3
∆c

(1.34)

is the amount of matter contained in a spherical region of a virialized halo

of radius R∆c (see Section 1.3) where the cluster overdensity is ∆c times

the critical density ρcr(z) The quantity ρcr(z) = ρcr,0E
2(z), where ρcr,0, is

to the critical density at redshift z = 0 (Eq. 1.7).

1.5.1 The Press & Schechter approach

By combining spherical top-hat collapse model with the growth function

for linear perturbations (Eq. 1.21), the cluster mass function can be ex-

pressed in terms of the mass threshold of mass variance σ2
M and critical

overdensity for spherical collapse δc. In this approach, it is assumed that

all density perturbations continue to grow according to the linear growth
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Figure 1.5: Transfer function by Eisenstein & Hu (1998) for a model with no

baryons (magenta solid curve) and for a model with a high amount of baryons

(Ωb = 0.1) (blue dotted curve). For Ωm = 0.28 and h = 0.7, the characteristic

wave-number at the equivalence redshift, keq (Eq. 1.32), and the Silk damping

scale kSilk (Eq. 1.33) in the case of Ωb = 0.1 are also shown.
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rate D(z), even when their amplitudes become non-linear. When pertur-

bations are treated in this way, their variance on mass scale M as a func-

tion of redshift can be expressed by Eq. 1.29 . Moreover, it is assumed that

perturbations collapse and virialize when their density contrast exceeds

the critical threshold δc.

According to the Press-Schechter (PS, Press & Schechter, 1974) ap-

proach, under the assumption of Gaussian perturbations, the probabil-

ity for the linearly evolved smoothed field δM, with mass in the range

[M,M+ dM], to exceed at redshift z the critical density contrast δc is

dp>δc(M, z) =
dM√

2πσM(z)

∫ ∞

δc
exp

(

− δ2M
2σM(z)2

)

dδM (1.35)

=
1

2
erfc

(

δc√
2σM(z)

)

,

where erfc(x) is the complement error function.

Eq. 1.35 implies that the shape of the mass function depends only on

σ(M, z) and remains invariant with respect to the characteristic collapsing

mass scale M∗(z) at which σ(M∗, z) = δc. In principle, if we take the limit

of arbitrarily small mass and if we consider the whole mass range, we

should recover the entire mass content of the Universe and the integral

of the probability should be
∫ ∞

0 dp>δc = 1. However, in this derivation, a

point with δM < δc, for a given filtering mass scale M has zero probability

to reach δM′ > δc for some larger filtering scale M′ > M. This means

that the PS approach neglects the possibility for that point to end up

in a collapsed halo of larger mass and for this reason
∫ ∞

0 dp>δc = 1/2.

Bond et al. (1991) provided a derivation of the mass function, correctly

accounts for the missing factor 2, at least for the particular choice of a

sharp-k filter (i.e., a top-hat window function in Fourier space).

Since Eq. 1.35 provides the fraction of volume in objects of a given

mass, the number density of such objects will be obtained after dividing

it by the volume, VM = M/ρ̄, occupied by each object and the expression

for the PS mass function reads

dn(M, z)

dM
=

2

VM

∂p>δc(M, z)

∂M

=

√

2

π

ρ̄

M2

δc
σM(z)

∣

∣

∣

∣

dlnσM(z)

dlnM

∣

∣

∣

∣

exp

(

− δ2c
2σM(z)2

)

. (1.36)
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1.5.2 Numerical calibration of the mass function

Sheth & Tormen (1999) generalized the expression for the PS mass func-

tion and calibrated the free parameters using numerical simulations. Later

Sheth et al. (2001) refined this calculation, incorporating a moving barrier

for the collapse criterion of halos in which the critical density varies with

the peak height, as motivated by the more physically realistic ellipsoidal

collapse model. The functional form usually adopted to describe halo

abundance in simulations is:

dn

dM
= f (σM)

ρ̄

M

d ln σ−1
M

dM
. (1.37)

In the extended PS theory, the overdensity at a location in a linear den-

sity field follows a random walk with decreasing smoothing scale. The

function f (σM) is the σM-weighted distribution of first crossings of these

random walks across a barrier separating collapsed objects from uncol-

lapsed regions (e.g. where the random-walking overdensity first crosses

δc ). The Sheth & Tormen (1999) expression for f (σM) is:

f (σM, z) =

√

2a

π
C

[

1+

(

σ2
M

a δ2c

)q]

δc
σM

exp

(

− a δ2c
2 σ2

M

)

. (1.38)

The best-fitting values of the parameters are a = 0.707, q = 0.3, with

C = 0.3222 obtained from the normalization requirement
∫ ∞

0 f (σM)dν =
1 (note that the PS expression is recovered for a = 1, q = 0 and C = 1/2).

The values of these parameters have been found by comparing Eq. 1.38

with results from N-body simulations, in which the mass of the clusters

was estimated with a spherical overdensity (SO) algorithm, by computing

the mass within the radius encompassing a mean overdensity equal to the

virial one ∆m,vir.

Looking for a universal form of the mass function, universal in the

sense that the same functional form and parameters can be used for dif-

ferent cosmologies and redshift, Jenkins et al. (2001) proposed the follow-

ing expression for the mass function

f (σM, z) = A exp(−| ln σ−1
M + B|C) , (1.39)

which has been obtained as the best fit to the results of a combination of

different simulations. In ΛCDM cosmology and for halos identified with

the SO algorithm, A = 0.316, B = 0.67 and C = 3.82. The accuracy of
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Eq. 1.39 in reproducing results of numerical experiments has been also

discussed in Evrard et al. (2002) and White et al. (2002). These papers

also stressed the role of different algorithms used to identify clusters and

to estimate their mass in simulations, and discussed the universality of

this expression for generic values of cosmological parameters.

Tinker et al. (2008) mass function calibration. In more recent studies

the attention were focused on the redshift evolution of the mass function

(Reed et al., 2003, 2007; Lukić et al., 2007; Cohn & White, 2008) or the im-

pact of gas physics associated with halo baryons (Stanek et al., 2009).

In particular Tinker et al. provided in 2008 a new calibration for the

cluster mass function that reads:

f (σ) = A

[

(σ

b

)−a
+ 1

]

e−c/σ2
(1.40)

where the parameter A sets the overall amplitude of the mass function,

a and b set the slope and amplitude of the low-mass power law, respec-

tively. Finally, c determines the cut-off scale where the abundance of halos

exponentially decreases. This study was the first that opens the density

threshold degree of freedom; their fitting parameters are published as

functions of ∆m (see Table 2 in Tinker et al. (2008)).

The simulations by Tinker et al. (2008) achieve a fit with 5% statistical

precision in halo number at z = 0 for a ΛCDM cosmology. In order to

maintain such a precision for redshifts up to 2.5 and 200 ≤ ∆m ≤ 3200, it

is required the introduction of mild redshift and ∆m dependence into the

fitting parameters of Eq. 1.40 .

A(z) = A0 (1+ z)−0.14 (1.41)

a(z) = a0 (1+ z)−0.06 (1.42)

b(z) = b0 (1+ z)−α (1.43)

log α(∆m) = −
[

0.75

log (∆m/75)

]1.2

(1.44)

In this respect, Tinker et al. (2008) state that the mass function cannot

be represented by a universal function at this level of accuracy. In par-

ticular, as ∆m increases the halo masses become systematically smaller.

Thus, from ∆m = 200 to 3200, the mass scale of the exponential cut-off re-

duces substantially. The shape of the mass function is also altered due to

two effects. First, the fractional change in mass when converting between
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Figure 1.6: Ratio between mass functions from Press & Schechter (1974) (green

dotted curve), Sheth & Tormen (1999) (magenta solid curve), and Jenkins et al.

(2001) (blue dot-dashed curve) and the mass function provided by Tinker et al.

(2008) (n(M)Tin) as a function of mass for two different redshift values, z = 0 in

the upper panel and z = 1 in the lower panel.

values of ∆m is not a constant; it depends on halo mass. Since halo con-

centrations are higher for smaller halos, the fractional change is higher at

lower masses, thus the mass function becomes steeper. Second, a number

of low-mass objects within R200 of a larger halo are considered as distinct

halos when halos are identified with ∆m = 3200. At high masses, the

number of such halos decreases exponentially with mass, and therefore

the contribution of such exposed halos becomes small.

Moreover, in the analysis conducted by Tinker et al. (2008), the range

of cosmologies probed is narrow given the volume of parameter space,

but it is wider than the allowed range for ΛCDM cosmologies given re-

cent results from CMB in combination with other large-scale measures

(Komatsu et al., 2009). Thus, large variations in Ωm at z=0 (i.e., Ωm = 0.1

or 1), can not to be fit by z=0 mass function within 5% accuracy.

An important motivation for the precision determination of the mass
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function is the existence of several ongoing and upcoming surveys that

aim to detect clusters via their optical, X-ray, and Sunyaev-Zel’dovich (SZ)

effect signatures (Laureijs et al., 2011; Rosati et al., 2011; Predehl et al.,

2007; Williamson & the SPT Team, 2011; Marriage & the ACT Team, 2011;

Planck Collaboration, 2011). The number of detected clusters from the

individual surveys will range from thousands to tens of thousands. To

maximally extract cosmological information from these cluster surveys,

the mass function must be specified to better than a few percent accuracy

for a range of cosmologies. The current theoretical uncertainty in the de-

termination of the mass function can lead to a considerable degradation

in the constraints on cosmological parameters.

In Figure 1.6 we show a comparison between the more commonly

used mass function at redshifts z = 0 and z = 1. With respect to the

Tinker et al. (2008) prescription, the PS one overestimates the number of

objects with low masses and underestimate those with higher redshift.

The mass functions provided by Jenkins et al. (2001) and Sheth & Tormen

(1999) show a higher level of agreement with the Tinker et al. (2008) one.

However, Jenkins et al.’s result is 10%− 15% below Tinker et al.’s result

and the Sheth & Tormen (1999) function is similarly offset for masses

below 4 × 1014 M⊙at z = 0. At redshift z = 1, on the contrary, both

the Sheth & Tormen (1999) and the Jenkins et al. (2001) predictions are

slightly higher than the Tinker et al. (2008) one for masses lower than

5× 1013 M⊙. For high masses and especially increasing the redshift dif-

ferent mass function prescription can predict a very different number of

objects.

The next step in the theoretical calibration of the mass function for

precision cosmology should cover a wide range of masses, should include

careful examination of subtle dependencies of mass function on cosmo-

logical parameters (especially on the DE EoS), effects of neutrinos with

non-zero mass, effects of non-Gaussianity (Grossi et al., 2007; Dalal et al.,

2008). Moreover we need to understand the effects of baryonic physics

on the mass distribution of halos and consequently on the mass func-

tion, which can be quite significant (Cui et al., 2011; Stanek et al., 2009;

Rudd et al., 2008).

1.5.3 Mass function as a cosmological tool

The exponential sensitivity to mass and redshift is evident in all the ex-

pressions for the cluster mass function that we have shown in this Section
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(Eqs. 1.38,1.39,1.40). Thanks to this dependence, the mass function is a

powerful probe of cosmological models. All the cosmological parameters

that we have mentioned throughout this Chapter (Ωm, ΩDE, w(z), Ωk, σ8,

h, ns) enter in the mass function through σM (Eq. 1.29), which depends

on the power spectrum (Eq. 1.31) and on the linear perturbation growth

factor (Eq. 1.21).

The abundance of massive clusters exponentially depends on the am-

plitude of mass fluctuations at the physical scale R, because if the ampli-

tude of mass fluctuations is high structures form rapidly at early times,

while for lower amplitude structures form more slowly. Therefore, the

normalization of the power spectrum, σ8 has a strong impact on structure

formation and evolution as we show in Figure 1.7.

The evolution with redshift of the mass function entirely depends on

the growth factor 1.21. This is a well defined function of Ωm, ΩDE, and

w according to which perturbation growth stalls when Ωm ≪ 1. This

effect is strong for high mass clusters because these objects are the latest

to be formed in the hierarchical CDM scenario (Eke et al., 1996). The

value of ΩDE and w parameters modify the redshift at which Ωm departs

significantly from unity (Figure 1.7).

Most massive clusters test Recently, the discovery of high redshift, mas-

sive clusters such as XMMU J2235.3-2557 at z ∼ 1.4 (Mullis et al., 2005;

Rosati et al., 2009) and SPT-CL J0546- 5345 at z ∼ 1.1. (Brodwin et al.,

2010) have led to reports of possible tension with the Gaussian ΛCDM

model (e.g. Jee et al., 2009; Holz & Perlmutter, 2010). Because the cluster

mass function is particularly sensitive to the cosmological parameters at

high masses and redshifts, as we show in Figure 1.7, it is worth to cal-

culate the probability of finding a cluster with a given mass and redshift

within its survey volume in order to test a specific cosmological model.

Despite the fact that such test involves only one or a few very massive

clusters detected in a survey rather than the complete sample, a robust

assessment of the likelihood requires a detailed understanding of the se-

lection function as well as a full accounting for the effects of scatter in

the observable-mass scaling relations (see Section 2.2). Due to the steep-

ness of the high mass tail of the cluster mass function, errors in mass

measurements at the tens of per cent level, for example (as might be

expected for weak lensing measurements of an individual cluster), can

modify the probability of such a cluster to be observed by up to an or-
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Figure 1.7: The sensitivity of evolution of N(> M, z) for M > 5× 1014M⊙at
different cosmological parameters. The black solid line in both the panel corre-

sponds to the fiducial value of the ΛCDM model (Komatsu et al., 2011) where

Ωm = 0.28, σ8 = 0.81, ΩDE = 0.72,w = −1. Left panel: N(> M, z) for Ωm = 0.4

(dotted blue curve) and Ωm = 0.2 (dotted cyan curve), for σ8 = 0.9 (dot-dashed

red curve) and for σ8 = 0.7 (dot-dashed orange curve). Right panel: N(> M, z)

for ΩDE = 0.5 (dot-dashed green curve) and ΩDE = 0.9 (dot-dashed dark green

curve), for w = −0.8 (dotted pink curve) and for w = −1.2 (dotted violet curve).
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der of magnitude (see Figure 1.8). Moreover, it is necessary to investigate

the high mass end of mass function. As we stressed in Section 1.5.2 the

existing limited-volume simulations do not constrain the number density

of extremely massive clusters accurately, and the commonly used fitting

functions are simply extrapolated results in this regime. Another poten-

tially important contribution from numerical simulation is the predicted

mass function specific for a given survey, which takes into account the

various aspects of selection limits and projection effects. The projection

effect is always a concern in the cosmological interpretation of extremely

massive clusters. Certainly, a superposition of two moderately massive

clusters or a long filament viewed along the line of sight can be identi-

fied with an extreme object. Mortonson et al. (2011) presented a fitting

formulae, which provides the “exclusion mass” as a function of redshift

for given sample and parameter variance confidence limits. Even a sin-

gle cluster equal to or above the exclusion mass would rule out ΛCDM

model. For instance, Jee et al. (2011) compared their sample of 27 clusters

at z > 0.8 to the exclusion curves of Mortonson et al. (2011) and claimed

that the discoveries of 4 clusters, whose masses have been estimated from

weak lensing analysis, within their parent survey are very rare events. In

particular: XLSS J0223-0436 at z ≃ 1.22 with mass M200 = 7.4+2.25
−1.8 has

a discovery probability of 1%, RDCS J1252-2927 at z ≃ 1.24 with mass

M200 = 6.8+1.2
−1.0 has a discovery probability of 0.2%, XMMU J2235-2557 at

z ≃ 1.39 with mass M200 = 7.3+1.7
−1.4 has a discovery probability of 1.3%,

CL J1226+3332 at z ≃ 0.89 with mass M200 = 13.7+2.4
−2.0 has a discovery

probability of 0.6%.

1.6 Cluster Bias

Fluctuations in the number density of clusters on large scales are ob-

served to be more pronounced than the fluctuations of the underlying

matter density (e.g. Bahcall & Soneira, 1983; Klypin & Kopylov, 1983).

This means that, the fractional deviation of dn(M)/dM from its mean

value, within a given volume of the Universe, is observed to be larger

than δρ/ρ in that same volume. The ratio, b(M), between the perturba-

tion in the number density of clusters of mass M and the perturbation

amplitude of the matter density is called the bias parameter of dark mat-
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Figure 1.8: Probability to find at least one cluster in a 50deg2 X-ray survey area

with flim[0.5− 2keV] = 1× 10−14 erg s−1 cm−2 at z ≥ 1.58 as a function of the

virial mass computed from the ΛCDM mass function for WMAP-7 parameter

values Komatsu et al. (2011).
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ter haloes, and can be define as:

b2(M) =
Ph
Plin

, (1.45)

that is the ratio of the halo power spectrum to the linear matter power

spectrum.

According to the predictions based on the Spherical Collapse (SC)

model for the formation of dark matter halos from Gaussian perturba-

tions, and using the peak-background split approximation, Cole & Kaiser

(1989) and Mo & White (1996) derived a bias relation of the form

b(ν) = 1+
ν2 − 1

δc
, (1.46)

where ν = δc/σM. However, failing the Press-Schechter mass function

(Eq. 1.36) to reproduce the dark matter halo mass function found in sim-

ulations, the bias function (Eq. 1.46) also does not compare well to simu-

lations (see, e.g. Jing, 1998, 1999; Sheth & Tormen, 1999). In particular the

SC model overpredicts the bias in the range 1 . ν . 3, while underpredict-

ing slightly the bias for the lowest mass halos in subsequent simulations

by Tinker et al. (2010) (see Fig. 1.9). Using the peak-background splitting

and the ST mass function, Sheth et al. (2001) (SMT) derived an improved

expression for the bias

b(ν) = 1+
1√
aδc

[√
a(aν2) +

√
ab(aν2)1−c

− (aν2)c

(aν2)c + b(1− c)(1− c/2)

]

, (1.47)

where a = 0.707, b = 0.5, and c = 0.6 describe the shape of the moving

barrier. It is shown (Tinker et al., 2010), the SMT bias equation underpre-

dicts the clustering of high-peak halos while overpredicting the asymp-

totic bias of low-mass objects, being the SMT bias too high at low ν and

too low at high ν. The bias function introduced by Tinker et al. (2010) has

a similar but more flexible form then the SMT one:

b(ν) = 1− A
νa

νa + δac
+ Bνb + Cνc. (1.48)

This equation scales as a power law of ν at the highest masses, flattens

out at low masses, and asymptotes to b = 1 at ν = 0, and provides a > 0.
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The best-fit parameters of Eq. 1.48 scale smoothly with ∆, allowing

to obtain fitting functions for these parameters as a function of log ∆m

in a range of 200 ≤ ∆m ≤ 3200. As ∆m increases, bias increases at all

mass scales. At high masses, as ∆m increases, a fixed set of halos will

have lower masses, but the same clustering properties, essentially shift-

ing them along the ν-axis. At low masses, the amplitude of the bias curve

also monotonically increases with ∆m, owing to the substructures within

high-mass halos that become distinct objects as R∆m decreases. Being

these new low-mass halos in the vicinity of high-mass objects, they have

significant clustering. The spherical collapse model is defined by a thresh-

old for collapse that is independent of halo mass. However, peaks in the

linear density field become increasingly elliptical and prolate at low-ν,

delaying collapse. Therefore, in this mass regime, the barrier in the ellip-

soidal collapse model is significantly higher than the constant δc assumed

in spherical collapse calculations. As a result, collapsed low-mass halos

reside in higher density environments, making them less abundant and

more biased. At high ν, the ellipsoidal collapse barrier asymptotes to the

spherical δc value, and these two models should, thus, converge at high ν.

However, the numerically calibrated barrier used in the SMT fit asymp-

totes to a value lower than the spherical collapse δc in order to produce

the abundance of high-mass halos (Robertson et al., 2009). Consequently,

the clustering of high-ν halos in the SMT model is lower than the spheri-

cal collapse prediction.

1.7 Cluster power spectrum and redshift space

distortions

We do not actually measure the cluster power spectrum in real space,

instead we obtain the radial position of an object through redshift mea-

surements, by convolving the real distance with additional redshifts due

to peculiar velocities. Because of these peculiar velocities the redshift-

space power spectrum is distorted with respect to the power spectrum in

the real space. This effect is called Redshift Space Distortions (RSDs).

Two important effects occur in redshift space.

The first important distortion is the Fingers of God effect where long

thin filaments in redshift space point directly back at observer. Assuming

we are not privileged observers, the Fingers of God effect must be non-
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Figure 1.9: Upper Panel: Halo bias as a function of ν for ∆m = 200, as predicted

by SC (Eq. 1.46), SMT (Eq. 1.47), and Tinker et al. (2010) (Eq. 1.48). Each point

type indicates a different simulation. The different colours, from left to right, go

in order of increasing redshift from z = 0 to z = 2.5 (see Tinker et al. (2010) for

details). Lower Panel: Fractional differences of the N- body results with the the

fitting function shown in the upper panel. Figure from Tinker et al. (2010).
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physical. This effect is attributed to random velocity dispersions. Galaxy

clusters random peculiar velocities deviate a galaxy’s velocity from pure

Hubble flow, stretching out a cluster in redshift space. Since this affects

only redshift and not position on the sky, the stretching occurs only radi-

ally (see Fig. 1.10).

The other important redshift distortion is called Kaiser Effect. This

describes the peculiar velocities of objects bound to a central mass as

they undergo infall. In this case the peculiar velocities are coherent, not

random, towards the central mass (see Fig. 1.10).

On small transverse scales, random dispersion velocities cause the Fin-

gers of God effect. On large scales, the Kaiser Effect causes a “flattening”

of the correlation function, due to the subtle infall motion of galaxies.

In particular the redshift space power spectrum gains an angular depen-

dence through the linear Kaiser factor (Kaiser, 1987) with respect to the

isotropic, real space mass power spectrum P(k):

P(k, µ) =
(

b+ f µ2
)2

P(k) (1.49)

where µ is the cosine of the angle that k makes with the line of sight

and f is the dimensionless growth rate given by:

f =
d lnD

d lna
(1.50)

where a is the scale factor, and D(a) is the growth factor (Eq. 1.21).

1.8 Non-standard cosmological models

In the previous Sections, the evolution of the Universe and the structure

formation history have been briefly exposed assuming the ΛCDM sce-

nario. As it has already been mentioned, this model predicts that the

∼ 75% of the energy density of the Universe exists in a unknown form

with large negative pressure called dark energy. This DE is expressed

as a cosmological constant, Λ, whose equation of state is wDE = −1.

The ΛCDM cosmological model is a well defined, simple and predictive

model, which is consistent with the majority of current cosmological ob-

servations (e.g. Lazkoz & Majerotto, 2007; Kowalski et al., 2008). Despite

of these successes, there are observational results, e.g. on the central den-

sity profiles of DM halos and number of halo satellites, which have been

claimed to be in tension with ΛCDM predictions. However, as of today
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Figure 1.10: Pictorial view of Redshift Space Distortions of a spherical object in

redshift space, as obtained by combining the Finger of God and the Kaiser effect.

Figure from 2dF Galaxy Redshift Survey Team (2001).
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it is not clear whether this tension has to do with intrinsic limitations of

the CDM paradigm or just reflects the still limited understanding of the

impact of baryon physics on the evolution of DM halos.

As regard the DE, its physical origin remains a deep mystery. If vac-

uum energy is the origin of the cosmological constant, it suffers from a

serious problem because Quantum Field Theories predict a Plank-scale

vacuum energy that corresponds to a value for the cosmological constant

density of ρΛ ∼ 2× 10110erg/cm3. This value is about 120 orders of mag-

nitude larger then the observed one ρ
(obs)
Λ

∼ 1010erg/cm3. This issue is

usually called the cosmological constant problem (Weinberg, 1989).

In this Section, we will focus of the model proposed in order to over-

come the Dark Energy problems. A plethora of models have been pro-

posed that release one or more of the assumptions of the standard ΛCDM

model, and propose alternative explanations for the physical origin of

the cosmic acceleration expansion and the nature of the DE. We can di-

vide these models in three main classes. A group of models in which

the energy-momentum tensor Tαβ on the right hand side of the Ein-

stein equation (Eq. 1.2) contains an exotic matter source with a neg-

ative pressure (e.g. Tsujikawa, 2010). Another possibility is that Gen-

eral Relativity breaks down on cosmological scales and must be replaced

with a more complete theory of gravity; this would imply to change the

left hand side of the Einstein equation (Eq. 1.2) (e.g. Tsujikawa, 2010;

Silvestri & Trodden, 2009). A third possibility is to drop the assumption

that the Universe is spatially homogeneous on large scales, but such so-

lutions do not yet seem compelling (e.g. Tsujikawa, 2010).

1.8.1 Dark Energy models

Current data do not provide strong constraints on time evolution of DE

EoS parameter. thus evolving models of DE remain an alternatively can-

didates to the ΛCDM one. The main classes of the so called DE models

are briefly introduce in the following.

Quintessence models. The introduction of a new degree of freedom,

a canonical scalar field φ, makes vacuum energy effectively dynamical

(Caldwell et al., 1998; Zlatev et al., 1999). A given quintessence potential

V(φ) determines the expansion history by changing the DE EoS param-

eter. This evolve with time deviating from -1 to wDE = wφ > −1. This
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changes the Friedman equations (Eqs.1.4, 1.5) at late time, when the field

energy density needs to dominate to be responsible for DE. Consequently

the evolution of the Universe changes according to Equation 1.10 (see Fig-

ure 1.2), and also the structure growth history changes as we showed in

Figure 1.3.

k-essence models realize the cosmic acceleration by a non-canonical

field kinetic energy (Armendariz-Picon et al., 2000). Models with mul-

tiple attractor solutions, such that the field scales with EoS parameter

wDE = 1/3 during the radiation era, and runs off to a de Sitter-like solu-

tion after the onset of matter domination, have been proposed as possible

solutions of the coincidence problem (Armendariz-Picon et al., 2000), i.e.

that DM and DE densities, differing by orders of magnitude since ever,

approach one another at today’s eve. However, there is another aspect of

k-essence that must be considered: some of the k-essence models predict

that the sound speed for the propagation of high-frequency perturbations

is different from the unity, the value that the sound speed has in a canon-

ical scalar field. The k-essence models that predict v2s < 0 are eliminated

because they are unstable to the growth of fluctuations. Density fluctua-

tions in models with 0 < v2s ≪ 1 can leave a strong imprint on the CMB

and large-scale structure.

Fluctuations in the DE component, dependent upon the DE density

EoS parameter, and sound speed can leave an imprint on large-scale

structure and the CMB, by changing the predicted mass function number

cluster prediction. Affecting the amount of ΩDE as a function of time,

Quintessence and k-essence models indirectly change the matter power

spectrum and the bias relative to galaxy clusters.

Coupled DE models investigate the possibility that DE may have some

relation with DM, since the energy density of DE is of the same order as

DMone in the present Universe. However, the quintessence scalar field

non trivially couple to the CDM component, and the presence of this non

trivial coupling between the quintessence scalar field and the DM com-

ponent modifies the cosmological background evolutions. The evolution

of CDM energy density ρCDM(z) depends explicitly on the quintessence

field φ. Due to the modify evolution of CDM energy density, the in-

teraction between dark sectors could shift the matter-radiation equality

scale factor a, and affect the locations and amplitudes of acoustic peaks
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of CMB temperature anisotropies and, consequently, the turnover scales

of LSS matter power spectrum. In addition, the interaction will also af-

fect the late Integrated Sachs-Wolfe effect at large scales which is pro-

duced by the CMB photons passing through the time-evolving gravita-

tional potential well, when DE or curvature becomes important, at later

times (Brookfield et al., 2008).

The Generalized Chaplygin gas model allows the description of DE

and DM as a single fluid. However, it needs to be set very close to

the ΛCDM prescription to explain the observed matter power spectrum.

There is a class of viable unified models of DE and DM that uses a purely

k-essence field (Unified Dark Matter, UDM ). This field during the struc-

ture formation behaves like the DM, while, at the present time, such field

contributes to the total energy density of the Universe acting like a cos-

mological constant Λ. Those UDM models are able to reproduce the

same Hubble expansion as in the ΛCDM model (Bertacca et al., 2007),

because in such models the sound speed could be small enough to let

the cosmological structures grow and reproduce the LSS we see today

(Bertacca et al., 2008). An effect of the presence of a non-negligible speed

of sound of the UDM scalar field is that the radius at which the pertur-

bation collapse (i.e. the Jeans length) gains an effective time-dependence.

The increase of the the sound speed, from the zero value of the ΛCDM

model, inhibits structure formation earlier in time, thus we observe less

power on small scales and, as a consequence, the matter power spectrum

acquires a oscillatory features.

1.8.2 Modified gravity models

A different approach holds that cosmic acceleration is a manifestation of

new gravitational physics, rather than a new energy momentum compo-

nent.

The simplest family of modified gravity models is obtained by re-

placing the Ricci scalar R in the usual Hilbert-Einstein action, for some

non-linear viable functions f (R) that satisfy both cosmological and lo-

cal gravity constraints. The f (R) gravity (Sotiriou & Faraoni, 2010) is

equivalent to a scalar-tensor theory, where fR = d f/dR is the addi-

tional scalar degree of freedom. Such field has a mass and propagates

on scales smaller than the associated Compton wavelength. Well within
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the Compton wavelength, the scalar mediates an enhancement of gravi-

tational forces, which strongly effects the growth of structure in the Uni-

verse. Such enhancements is quantified by the mass of the field or equiv-

alently by the value of the field in the background, fR0. In the non-linear

regime, for field values larger than | fR0| ∼ 10−5, cosmological simula-

tions have shown that the abundance of rare massive halos are enhanced

(Schmidt et al., 2009), and the growth factor acquire a dependence on the

scale (Pogosian & Silvestri, 2008). Counts of galaxy clusters therefore pro-

vide the opportunity to improve cosmological constraints on f(R) models

ultimately by 4-5 orders of magnitude. Moreover the bias in f (R) sce-

nario decreases with increasing | fR0| since halos of a fixed mass become

less rare and thus less highly biased (Schmidt et al., 2009).

Another class of modified gravity models is the braneworld one. Ac-

cording to these models a four-dimensional Universe is restricted to a

brane inside a higher-dimensional space, called the bulk. A particular

braneworld model has been proposed by Dvali, Gabadadze, and Por-

rati (DGP, Dvali et al., 2000). According to the DGP model, the bulk is

a infinitely large extra dimension with a Minkowski space-time metric.

Newton gravity can be recovered by adding a 4D Einstein-Hilbert action

sourced by the brane curvature to the 5D action. The standard 4D gravity

is recovered for small distances, whereas the effect from the 5D gravity

manifests itself for large distances. The DGP model admits two Hub-

ble parameter solutions of modified Friedmann equations: one of them

presents a self-accelerating behaviour at late-times without any cosmo-

logical constant term, hence it is known as the “self-accelerating” branch.

The other solution is called the “normal” branch.

Presenting the standard DGP a strong tension between Type Ia Su-

pernova (SNIa) data and CMB distance indicators, a phenomenological

extension of the DGP model has been recently proposed, the so called ex-

tended DGP model (eDGP). In this extension, the DGP cross-over length

rc, that determines the scale at which higher-dimensional gravitational

effects become important, is tuned by a new additional parameter α,

and a cosmological-constant term is explicitly present as a non-vanishing

tension on the brane. In Camera et al. (2011) a sample of cosmological

observables has been selected including H(z) data, Type Ia Supernovae

(SNeIa) and Gamma Ray Bursts (GRBs) as standard candles, BAOs from

galaxies survey and priors from CMB observation. By studying both

branches of the eDGP model and the ΛCDM model, they found that the

eDGP models can fit current data at least as well as the standard ΛCDM
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model.

1.9 Primordial non-Gaussian density fluctuations

The question of how the primordial fluctuations of density field have been

generated is generally answered with the inflaction model (see Section

1.1)

Many different models of inflation have been proposed over the years

(Guth, 1981; Linde, 1983), differing mainly in the number and the prop-

erties of the scalar field(s) driving the accelerated expansion. A class

of these models predicts a scale-free power spectrum of the primordial

density fluctuations, with a spectral index very close to the Harrison-

Zel’dovich value of unity (see Section 1.4), and moreover it predicts that

the primordial density fluctuation has a Gaussian distribution. Other

models of inflation predict, instead, a spectral index that depends on

the scale (running index). In this Thesis, we studied the class of mod-

els that predicts primordial density fluctuations that follow a distribution

different from the Gaussian one (e.g. Bartolo et al., 2004; LoVerde et al.,

2008; Giannantonio & Porciani, 2010). non-Gaussian perturbations are ex-

pected to leave their imprint on the pattern of structure growth at least

in two different ways. First, we expect that a positively skewed distri-

bution provides an enhanced probability of finding large overdensities.

This translates into an enhanced probability of forming large collapsed

structures at high redshift, thereby it changes the timing of structure for-

mation, the shape and the evolution of the mass function of dark mat-

ter haloes (Matarrese et al., 2000; Grossi et al., 2007; Matarrese & Verde,

2008). Therefore in order to use clusters to detect deviations from the

Gaussian scenario of structures formation, we need the non-Gaussian pre-

scription for the halo mass function and bias (see following Sections).

Moreover, non-Gaussianity affects the large-scale clustering of haloes

in such a way that the linear biasing parameter acquires a scale depen-

dence. This modifies, in a detectable way, the power spectrum of the

distribution of any tracer of cosmic structures at small wave-numbers

and offers a unique way of testing the nature of primordial fluctuations

(Dalal et al., 2008; Matarrese & Verde, 2008; Giannantonio & Porciani, 2010).

A commonly used way to parametrize primordial non-Gaussianity

consists in writing the Bardeen’s gauge invariant potential Φ as the sum

of a linear Gaussian term and a non-linear second-order term that encap-
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sulates the deviation from Gaussianity (Salopek & Bond, 1990; Komatsu & Spergel,

2001),

Φ = ΦG + fNL ∗
(

Φ2
G − 〈Φ2

G〉
)

(1.51)

where the dimensionless parameter fNL, which weights the quadratic cor-

rection to the Gaussian random field ΦG, depends on scale and config-

uration. The symbol ∗ denotes standard convolution, and it reduces to

simple multiplication when fNL is constant. Bardeen’s potential Φ, on

scales smaller than the Hubble radius, is equal to −Ψ, the usual Newto-

nian gravitational potential.

We stress that there is some ambiguity in the normalization of Eq.

1.51 . According to the LSS convention, Φ is linearly extrapolated at

z = 0. In the CMB convention, instead, Φ is primordial, thus fNL =
g(+∞) fCMB

NL /g(0) ≃ 1.3 fCMB
NL , where g(z) is the linear growth suppres-

sion factor for cosmological models different from the Einstein de Sitter

one. The function g(z) is defined as g(z) = g(0)D+(z) (1 + z), where

D+(z) is the linear growth factor (Eq. 1.21). In this Thesis, we will use

the LSS convention.

If the distribution of primordial density (and potential) perturbations

is not Gaussian, it cannot be fully described by a power spectrum ex-

pressed as Pφ = B kn, higher order moments are needed, such as the bis-

pectrum Bφ(k1, k2, k3). In particular, different models of inflation predict

different shapes of the bispectrum.

In this Thesis, we will study one particular shape, called local shape

(LoVerde et al., 2008). According to this shape, the magnitude of the bis-

pectrum is maximum when one of the three momenta (k1, k2, k3) has a

much smaller magnitude than the other two (“squeezed” configuration).

In such models, fNL is a dimensionless constant and the bispectrum can

be written as (Creminelli et al., 2007)

BΦ (k1, k2, k3) = 2 fNL B
2
[

kns−4
1 kns−4

2 + kns−4
1 kns−4

3 + kns−4
2 kns−4

3

]

.

(1.52)

Inflationary models exist that produce different shapes for the primor-

dial bispectrum, e.g. the equilateral shape (e.g. Crociani et al., 2009), or the

enfolded shape (Holman & Tolley, 2008; Meerburg et al., 2009; Verde & Matarrese,

2009). However, the local shape is the one giving the largest effects espe-

cially on bias (Taruya et al., 2008; Fedeli et al., 2009).
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1.9.1 Mass function

Generalizations to non-Gaussian models of the standard Press & Schechter

(1974) mass function have been presented in Matarrese et al. (2000) and

LoVerde et al. (2008). Both approaches assume that deviations from Gaus-

sianity are small. In particular, Matarrese et al. (2000) use the saddle

point approximation to compute the probability distribution of thresh-

old crossing, and then truncate the resulting expression to the skewness.

LoVerde et al. (2008) instead approximate the probability density function

for the smoothed DM density field by using the Edgeworth expansion

and then perform the integral of the probability distribution for thresh-

old crossing exactly on the first few terms of the expansion itself. The two

approaches give quite similar results, and both have been shown to give

reasonable agreement with full numerical simulations of structure forma-

tion (Grossi et al., 2009). The generalization of the PS mass function in the

Non - Gaussian scenario is

nNG = −
√

2

π

ρ̄(z)

M
exp

[

− δ2c (z)

2σ2
M

][

d ln σM

dM

[

δ2c (z)

2σ2
M

+
S3σM

6

(

δ4c (z)

σ4
M

− 2
δ2c (z)

σ2
M

− 1

)]

+
1

6

dS3
dM

σM

(

δ2c (z)

σ2
M

− 1

)]

(1.53)

where S3(M) is the normalized skewness, S3(M) = − fNL,0 µ3(M)/σ4
M .

The fNL,0 parameter represents the non-linear parameter evaluated at the

scale kCMB = 0.086 hMpc−1 roughly corresponding to the largest mul-

tipole used by Komatsu et al. (2009) to estimate non-Gaussianity in the

WMAP data, l= 700. In the local case fNL,0 = fNL. The third-order

moment is

µ3(M) =
∫

MR(k1)MR(k2)MR(k3) × BΦ (k1, k2, k3)
dk1dk2dk3

(2π)9

(1.54)

The function MR(k) relates the Fourier transform of density fluctuations

smoothed on some scale R to the relative peculiar potential, and is defined

as

MR(k) =
2

3

T(k) k2

H2
0 Ωm,0

WR(k) . (1.55)
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where T(k) is the matter transfer function and WR(k) is the top-hat win-

dow function (Eq. 1.30).

Under the assumption that the non-Gaussian correction to the mass

function is independent of the approach that is taken to evaluate the

mass function itself, the structure abundance in a cosmology with non-

Gaussian initial conditions can be computed in compliance to a generic

prescription according to

n(M, z) = n(G)(M, z)
nNG(M, z)

nPS(M, z)
. (1.56)

where nPS(M, z) is the mass function computed according to the PS for-

mula (Eq. 1.36). Here, n(G)(M, z) is the one computed as specified by

the preferred prescription, both of them evaluated within the Gaussian

assumption.

In Figure 1.11, we show the ratio of the non-Gaussian and Gaussian

mass function. As we increment the level of Non -Gaussianity, we predict

more massive clusters at higher redshift.

1.9.2 Bias

Primordial density fluctuations with non-Gaussian probability distribu-

tion cause a scale-dependent modification to the linear bias for given mass

and redshift (Dalal et al., 2008; Matarrese & Verde, 2008).

For values of fNL consistent with observations, we can keep terms

up to the three-point correlation function ξ(3) , obtaining that the correc-

tion to the halo correlation function, ∆ξh , due to a nonzero three-point

function, is given by

∆ξh =
ν3

2σ3
R

[

ξ
(3)
R (x1, x2, x2) + ξ

(3)
R (x1, x1, x2)

]

=
ν3

σ3
R

ξ
(3)
R (x1, x1, x2) (1.57)

where ν = δc/σR.

We can write the expression for the non-Gaussian contribution to the

halo power spectrum as:

∆Ph(k) = b20,L 4 fNLδcPΦδ(k)FR(k)PΦ(k1) ×
∫ 1

−1
dµMR(

√
α)

[

PΦ(
√

α)

PΦ(k)
+ 2

]

.

(1.58)
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Figure 1.11: Ratio between Non - Gaussian and Gaussian mass functions for

two different values of non-Gaussian parameter, fNL = 100 and fNL = 300, at

two different redshifts z = 0 and z = 1.
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where b0,L ≡ δc/σ2
R , corresponding to the Lagrangian linear bias that

halos would have in the Gaussian case. Moreover, in the above equation,

Pφδ(k) ≡ MR(k)Pφ(k) and

FR(k) =
1

8π2σ2
R

∫

dk1k
2
1MR(k1) (1.59)

The expression for the halo power-spectrum can be rewritten in a more

convenient form, where we make the redshift dependence explicit:

Ph(k, z) =
δ2cPδδ(k, z)

σ4
R

[

1 + 4 fNLδc(z)
PδΦ(k)FR(k)

Pδδ(k)

]

(1.60)

with Pδδ(k, z) = D2(z)Pδδ(k) = D2(z)M2
R(k)Pφ(k) . By defining the La-

grangian bias, bL , of the halos from the equation b2L = Ph(k, z)/Pδδ(k, z)
and by using bE = 1+ bL . We obtain the expression for the non-Gaussian

halo bias

bNG = 1 +
δc(z)

σ2
R

[

1 + 2 fNL
δc(z)

D(z)

FR(k)

MR(k)

]

(1.61)

Thus bNG ≃ bG(1+ ∆b/bG) where bh denotes the halo bias for the Gaus-

sian case and is always > 1. In Figure 1.12, we show the ratio between

the halo bias predicted by the non-Gaussian and Gaussian prescription.

The effect of non-Gaussianity grows with mass and is higher as redshift

increases. Moreover, as we show in the right panel of Figure 1.12, the

bias acquires a dependence from the scale. Thus, bias becomes higher as

wavenumber increases.

1.10 Constraints on cosmological parameters from

galaxy clusters

In this final Section, we will summarize the constraints obtained on cos-

mological parameters in the last decade from cluster analysis.

First attempts to use evolution of the cluster mass function as a cosmo-

logical probe were limited by small sample sizes and either poor proxies

for the cluster mass (e.g., the total X-ray flux). Despite such limitations,

constraints on Ωm ∼ 0.35± 0.13 were derived (e.g., Borgani et al., 2001;

Henry, 2004). Moreover, observational results from the past several years

yield for the power spectrum normalization typical uncertainties at the

∆σ8 ≈ 0.05 − 0.10 level despite a spread in central values that range
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Figure 1.12: Ratio between non-Gaussian and Gaussian halo bias for two

different values of Non - Gaussian parameter, fNL = 100 and fNL = 300.

Left panel: dotted curves represent bias ratio at redshift z = 0 and solid

curves represent bias ratio at redshift z = 1. Right panel dotted curves

represent bias ratio at wave-number k = 0.05Mpc−1 and solid curves

represent bias ratio at wave-number k = 0.15Mpc−1.
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from σ8 ≈ 0.65 to σ8 ≈ 1.0 (Viana & Liddle, 1996, 1999; Henry & Arnaud,

1991; Henry, 2000; Pierpaoli et al., 2001; Borgani et al., 2001; Seljak, 2002;

Viana et al., 2002; Schuecker et al., 2003; Allen et al., 2003; Bahcall et al.,

2003; Bahcall & Bode, 2003; Voevodkin & Vikhlinin, 2004; Rozo et al., 2007;

Gladders et al., 2007; Rines et al., 2007). As for DE EoS constraints, Mantz et al.

(2008) determine w = −1.4± 0.55 with a larger sample of distant clusters

(MACS survey, see Ebeling et al., 1998), using the X-ray luminosity as a

mass proxy.

More recently, Burenin et al. (2007) derives a large sample of galaxy

clusters extending to z ∼ 0.9 from X-ray ROSAT-PSPC pointed data cov-

ering 400 deg2 (the 400d sample). Distant clusters from the 400d sam-

ple were then observed with Chandra, providing high-quality X-ray data

and accurate mass proxies. Chandra observations are also available for

a complete sample of low-z clusters originally derived from the ROSAT

All-Sky Survey. Such data have significantly improved our knowledge of

the outer cluster regions and provided a much more reliable calibration

of the Mtot vs. proxy relations than what was possible before. On the

theoretical side, results from numerical simulations improved the under-

standing of measurement biases in the X-ray data analysis (Nagai et al.,

2007; Rasia et al., 2006) and have been used to suggest new, X-ray mass

proxies (Kravtsov et al., 2006). Moreover, the cluster mass functions fit-

ting formulas provided by Tinker et al. (2008) are formally accurate to bet-

ter than 5% for the cosmologies close to the concordance ΛCDM cosmol-

ogy. Vikhlinin et al. (2009a) confirm these theoretical results by estimating

the cluster mass functions from the low and high-z 400d cluster sample.

These data show a significant evolution in the cluster comoving number

density at a fixed mass threshold, by a factor of ≈ 5 at M500,c = 2.5×
1014h−1M⊙ between z = 0 and 0.5. Moreover Vikhlinin et al. (2009b) pre-

sented constraints on the cosmological parameters from Vikhlinin et al.

(2009a) samples. The matter density has been measured as Ωm = 0.30±
0.05 in a flat ΛCDM model and 0.34± 0.08 in a general cosmology. Evo-

lution of the mass functions constrains ΩΛ = 0.83 ± 0.15 in non-flat

ΛCDM cosmology, or the dark energy equation of state parameter, w0 =
−1.14± 0.21, in a spatially flat Universe. By including, the information

provided by Vikhlinin et al. (2009a) cluster data significantly improves

the equation of state constraints obtained from combination of multiple

cosmological datasets. By combining cluster data with the 5-year WMAP

(Dunkley et al., 2009), recent supernovae measurements, and detection of

baryonic acoustic oscillations in the SDSS (Eisenstein et al., 2005), with
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their own data sets Vikhlinin et al. (2009b) obtained w0 = −0.991± 0.045

(stat) ±0.040 (sys). (Figure 1.13).

Mantz et al. (2010a) presented cosmological constraints obtained from

an X-ray flux-limited sample of 238 massive galaxy clusters spanning

the redshift range z < 0.5, with follow-up Chandra and ROSAT X-ray

observations of 94 of these clusters. This analysis produces simultane-

ous constraints on cosmology and the cluster scaling relations using a

rigorous and fully self-consistent statistical method. The constraints on

spatially flat, cosmological constant models are Ωm = 0.23± 0.04 and

σ8 = 0.82± 0.05. Introducing a constant dark energy equation of state, w,

as a free parameter, they found w = −1.0± 0.2, in agreement independent

findings based on cluster gas mass fractions, CMB anisotropies, type Ia

supernovae, baryon acoustic oscillations, galaxy redshift surveys, cosmic

shear, X-ray selected galaxy clusters (Henry et al., 2009; Vikhlinin et al.,

2009b) and optically selected clusters (Rozo et al., 2010) (Figure 1.14).

As for the optical band, Rozo et al. (2010) derived cosmological con-

straints from the SDSS maxBCG cluster sample (Koester et al., 2007b)

and the statistical weak lensing mass measurement from Johnston et al.

(2007). Rozo et al. (2010) performed a joint analysis of the abundance

and weak lensing mass estimates of the maxBCG clusters detected using

SDSS imaging data. By using a prior on the scatter in the mass-richness

relation derived from the consistency between the weak lensing and X-

ray mass estimates of the clusters, their cosmological constraints can be

summarized as σ8(Ωm/0.25)0.41 = 0.832± 0.033. With a joint maxBCG

and WMAP5 analysis Rozo et al. (2010) reported σ8 = 0.807± 0.020 and

Ωm = 0.265± 0.016 (Figure 1.15).
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Figure 1.13: Constraints at 68 % CL on the (w0,ΩDE) parameters for flat ΛCDM

cosmology from the Vikhlinin et al. (2009a) sample, WMAP-5 , SNIa and BAO.

See Vikhlinin et al. (2009b) for details.
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Figure 1.14: Constraints at 68.3 and 95.4 % CL on (Ωm,w0) for ΛCDM model.

Constraints from the XLF (Mantz et al., 2010a), cluster fgas data Allen et al.

(2008), WMAP-5 (Dunkley et al., 2009), SNIa data (Kowalski et al., 2008), and

BAO observations (Percival et al., 2007). Results from combining these 5 data

sets are also shown in gold. Figure from (Mantz et al., 2010a).
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Figure 1.15: Constraints at 68 and 95 % CL on the (σ8,Ωm) paramters from

maxBCG (solid) and WMAP-5 (dashed) (Dunkley et al., 2009) for flat ΛCDM

cosmology. Combined results are shown with filled ellipses. Figure from

Rozo et al. (2010).



Chapter 2

Surveys of Galaxy Clusters

Galaxy clusters represent the place where astrophysics and cosmology

meet each other. As we showed in Chapter 1, according to the hierarchi-

cal growth structure model, clusters are the largest and most recent ob-

jects that have undergone gravitational relaxation and entered into virial

equilibrium. They represent the end result of the collapse of density fluc-

tuations involving comoving scales of about 10Mpc. On scales larger

than this, gravitational dynamics drive the formation of structures, and

gas-dynamical effects play a minor role. However, on scales smaller than

10Mpc, the complex astrophysical processes related to galaxy formation

and evolution, significantly change the evolution of cosmic baryons and,

therefore, the observational properties of the structures. For these rea-

sons, in order for clusters to be used as cosmological tools, one needs to

understand in detail the astrophysical processes which determine their

observational properties.

In this Chapter the methodology used to construct samples of galaxy

clusters in the optical/near-IR, in the X-ray and in the Microwave bands

will be reviewed. We will summarize for each of these bands the three

essential tools required to built a cluster sample and to use it for cosmo-

logical applications: an efficient method to identify clusters over a wide

redshift range; a method to define the selection function or equivalently

the survey volume within which clusters are found; and, finally, an ob-

servable estimator or “proxy” of the cluster mass.

67
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2.1 Cluster surveys in the optical/near-IR band

2.1.1 Identification of clusters

Optical identification of galaxy clusters has been going on since the end

of the eighteenth century with Charles Messier (1784) and William Her-

schel (1785). Finally, in 1989, Abell et al. provided the first extensive,

statistically complete sample of galaxy clusters. Based on purely visual

inspection, clusters were identified as enhancements in the galaxy surface

density and were characterized by their richness and estimated distance.

The richness of a cluster is a measure of the number of galaxies associated

with that cluster. In order to include a cluster in a catalogue, it is neces-

sary to specify the threshold in the surface number density enhancement

and the linear or angular scale of such enhancement. Because clustering

exists on a very wide range of angular and intensity scales (Peebles, 1980),

it is not possible to define unambiguously what a rich cluster is.

Another problem of optical surveys is the presence of background and

foreground galaxies. For this reason, it is not possible to state with abso-

lute confidence if a galaxy belongs to a given cluster. In fact, projection

effects in galaxy distribution represent the main issue in optical survey.

Filamentary structures along the line of sight can mimic a moderately rich

cluster when projected onto the plane of the sky. In addition, the back-

ground galaxy distribution, against which two dimensional over-densities

are selected, is far from uniform. The colours of the cluster members place

them on a narrow and distinctive locus, known as the red sequence, in a

plot of galaxy colour versus magnitude (e.g. Gladders & Yee, 2000). The

red-sequence represents the reddest galaxies of a set of galaxies at the

same redshift, and is easily detectable in the colour-magnitude diagram

since early-type galaxies dominate the bright end of luminosity function

in clusters. Therefore, selecting galaxies around the red-sequence, it is

possible to exclude most of background and foreground galaxies, which

are redder and bluer respectively. In Figure 2.1), we show, as an exam-

ple, the colour-magnitude diagram in the 2 h−1Mpc surrounding fields

of Abell 1682. For this cluster at z = 0.23, the cluster members (small

plus signs) place on the red sequence and thus they can be clearly distin-

guished from the galaxies of the field (dots).

Detecting clusters through surface number over-density in the galaxy

distribution, without any other information does not guarantee that such

systems are gravitationally bound. In this respect, it is crucial to obtain
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Figure 2.1: BCGs and cluster members in the fields of cluster Abell 1682. The

colour-magnitude diagram in the 2h−1Mpc surrounding fields of Abell 1682

(z = 0.23). The large plus sign is the BCG, dots are field galaxies within

2h−1Mpc, and small plus signs are cluster members. Figure from Koester et al.

(2007b).
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the radial velocities, vr, of the cluster galaxies from their redshifts. Under

the assumption of a cluster to be relaxed, the distribution of velocities

of member galaxies is expected to be Gaussian. Consequently galaxies

with velocities falling well outside the best-fitting Gaussian are unlikely

to be cluster members. On the other hand, when the velocity distribu-

tion of the potential cluster galaxies is far from Gaussian, probably the

galaxies surface over-density is a superposition of unbounded structures.

Fitting the velocity distribution to the candidates galaxies yields the one-

dimensional velocity dispersion σv for the cluster. The accuracy of σv
depends critically on the number of the measured galaxies velocities and

on the method used to identify and eliminate spurious cluster members.

Because of the ambiguities in the definition of a cluster and in the

background subtraction process that can produce spurious low-richness

clusters during searches for clusters in galaxy catalogues, and because

of the loose relation between galaxy counts and the overall optical lumi-

nosities of clusters, the definition of a selection function that ensures a

statistically complete and pure catalogue of galaxy clusters in the optical

band is difficult.

A significant step forward in exploring clusters in the local Universe

has been made with the wave-band photometry provided by the Sloan

Digital Sky Survey (SDSS, York et al., 2000), by increasing the number of

observed passbands. To cover a range of redshifts as large as possible,

multi-colour photometry is needed to track the intrinsic 4000 Angstrom

break feature of old stellar populations as it reddens. The five band pho-

tometry of the SDSS has allowed such selection. The maxBCG catalogue

(Koester et al., 2007a) of 13, 823 clusters with optical richness Ngal = 10

was produced using g and r colours and spans the redshift range 0.1 <

z < 0.3. Cosmological constraints from this sample are provided by

Rozo et al. (2010). Recently, larger SDSS clusters samples have been pro-

vided by Wen et al. (2009); Hao et al. (2010). These catalogues contain

between 40, 000 and 69, 000 clusters reading redshift z ≈ 0.6, and cover

roughly 8000 deg2.

2.1.2 Mass estimation

A primary challenge to cosmological analysis using optically based cata-

logues is the definition of robust cluster mass proxies that have minimal

and well understood scatter across the full mass and redshift ranges of

interest.
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Richness-mass scaling relation

All variations of the Abell criteria classify clusters according to the defi-

nitions of richness, which generally has a loose relation with the cluster

mass. However any cosmological application, requires that the observ-

able, on which the cluster selection is based, is a reliable and robust proxy

of the cluster mass.

Under the assumption that light traces mass in the universe, the total

optical luminosity of a cluster is an indicator of a cluster mass. The lumi-

nosity distribution function of cluster galaxies is nearly the same for all

clusters. Thus the high luminosity tip of this distribution normalizes the

overall galaxy luminosity function for the cluster, yielding estimates of

the cluster total optical luminosity and consequently its mass (Cohn et al.,

2007; Rozo et al., 2011).

The increasing quality of photometric data for the cluster galaxy pop-

ulation and the ever improving capability of removing fore/background

galaxies thanks to larger spectroscopic galaxy samples have allowed to

demonstrate that Lop can be used to estimate the cluster mass. In partic-

ular in Figure 2.2, we show the results obtained by Popesso et al. (2005)

by analysing SDSS data for a set of clusters which have been identified

in the RASS in the i band. They estimated cluster mass from the ve-

locity dispersions as estimated from the SDSS spectroscopic data. The

optical luminosity tightly correlates with the cluster mass, with a slope

of 1.5± 0.05 and with an intrinsic scatter of 40%, smaller than the scatter

obtained for the LX-M correlation.

These results stress that cluster samples with precisely measured op-

tical luminosities can be employed to constrain cosmological parameters.

However, it is useful to point out that sample selection function can be

extracted from an optically selected sample only in a indirect way, while

X-ray luminosity traces cluster mass provides a criterion to precisely de-

termine the sample selection function at the same time.

Galaxy Velocities

Under the assumption of virial equilibrium, which applies to steady, grav-

itationally bound systems, the mass of a spherical, isolated cluster can be

estimated by knowing position and redshift for a high enough number of

member galaxies:

M =
π

2

3 σ2
v Rvir

G
. (2.1)
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Figure 2.2: Lop − M500 relation in the i SDSS band. Empty squares indicate

clusters with mass estimated from the velocity dispersions analysis as estimate

from the SDSS spectroscopic data. The filled points indicate systems with mass

estimated from the M − TX relation. The dot-dashed line is the best fit line

obtained for the O sample. The dashed line is the best fit line for the X sample

and the solid line is the result obtained from the E sample. O refers to the

sample with masses estimated from the dynamical analysis performed with the

optical spectroscopic data. X refers to the sample with masses estimated from

the M − TXrelation. E refers to the enlarged sample, which comprises all the

clusters in the RASS-SDSS galaxy cluster catalogue with known mass. Figure

from Popesso et al. (2005).
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In this equation σv is the line-of-sight velocity dispersion and Rvir is the

virialization radius, which depends on the positions and the number of

the cluster galaxy members.

Tests of the accuracy of mass estimates based on the galaxy veloc-

ity method have been performed by using hydrodynamical simulations

of galaxy clusters. The results (Frenk et al., 1996; Biviano et al., 2006)

showed that galaxies identified in the simulations tracers the underlying

dynamics with no systematic bias in the estimate of cluster masses, but

with a large scatter between true and recovered masses, mostly induced

by projection effects.

This method has been extensively applied to measure masses for sta-

tistical samples of both nearby (e.g. Rines et al., 2003; Biviano & Girardi,

2003; Girardi & Mezzetti, 2001) and distant (e.g. Girardi et al., 2005; Borgani et al.,

1999) clusters.

Gravitational Lensing

In contrast to X-ray and optical dynamical methods, gravitational lens-

ing offers a way to directly study the mass distribution in the Universe

on different scales, regardless of its baryon content, mass-to-light ratio

and dynamical state (e.g. Bartelmann, 2010; Peacock & Schneider, 2006),

because it only depends on the gravitational potential well of the lens.

Gravitational lensing is predicted by the theory of General Relativity.

Instead of light from a source travelling in a straight line (in three dimen-

sions), it is bent by the presence of a massive body, whose gravitational

potential well distorts the space time.

The space-time curvature is ruled by the effective refraction index

n ≡ 1− 2φ/c2, where φ is the gravitational potential due to the mass

distribution of the lens. This index determines the deflection angle of

the light passing throughout the gravitational lens. This leads to the dis-

tortion of the images of background sources stretched tangentially to the

gradient of the gravitational potential, and to the formation of multiple

images and giant luminous arcs (Schneider, 2006). Observations of these

features allow to reconstruct the distribution of the mass responsible for

the deflection.

In particular, strong gravitational lensing is a gravitational lensing effect

that is strong enough to produce multiple images, arcs, or even Einstein

rings. An Einstein ring is a special case of gravitational lensing, caused by

the exact alignment of the source, the lens and the observer. This results
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in a symmetry around the lens, causing a ring-like structure. The size of

an Einstein ring is given by the Einstein radius:

θE =

√

4GM

c2
Dls

DlDs
,

where G is the gravitational constant, M is the mass of the lens, c is

the speed of light, Dl is the angular diameter distance to the lens, Ds

is the angular diameter distance to the source, and Dls is the angular

diameter distance between the lens and the source. Generally, the strong

lensing effect requires the projected lens mass density to be greater than

the critical density Σcr. For point-like background sources, strong lensing

causes multiple images; for extended background emissions, there can

be arcs or rings. Strong lensing enables precise measurements of the

projected masses through regions enclosed by gravitational arcs.

Because lensing is sensitive to the cluster’s mass within a given pro-

jected radius r⊥, when the deflection angle is small compared to a back-

ground galaxy’s angular distance from the cluster centre, weak lensing

shifts each point in the galaxy’s image to a slightly larger angular dis-

tance from the cluster’s centre, thereby distorting the image by stretching

it tangentially to r⊥.
While triaxiality of clusters is expected to introduce scatter in indi-

vidual (de-projected) mass measurements at the level of tens of per cent

(Corless & King, 2007; Meneghetti et al., 2010), the measurement of the

shear distortion of an entire field of background galaxies, under the as-

sumption that any intrinsic deviations of galaxy images from circular

symmetry are uncorrelated for statistical samples and using suitable mass

estimators, working over optimized radial ranges and with good knowl-

edge of the redshift distribution of the background population, are ex-

pected to provide almost unbiased results on the mean mass (Rasia et al.,

2012; Becker & Kravtsov, 2011).

In general, the observable quantity for weak lensing is not the gravi-

tational shear γ but the complex reduced shear,

g(θ) =
γ(θ)

1− κ(θ)
, (2.2)

where θ indicate the observed position, the convergence κ is expressed as:

κ(θ) = Σ((θ))/Σcrit (2.3)
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, namely, the projected mass density Σ(θ) in units of the critical surface

mass density for gravitational lensing, defined as

Σcrit =
c2

4πGDl
〈β〉−1, β(zs) ≡ max

[

0,
Dls(zs)

Ds(zs)

]

, (2.4)

where zs is the redshift of the source, Ds, Dl, and Dls are the proper angu-

lar diameter distances from the observer to the source, from the observer

to the deflecting lens, and from the lens to the source, respectively, and

〈β〉 is the mean distance ratio averaged over the population of source

galaxies in the cluster field. A lens with projected mass density larger

than Σcrit in its core can produce strong lensing effects, such as multiple

images; instead, a lens with Σ ≪ Σcrit produces only weak lensing effects.

Accurate measurements of the shapes (ellipticities) of background galax-

ies lead to the estimate of the lens (reduced) shear g. The major uncer-

tainty in these shear maps comes by the density of background galaxies

(Lombardi & Bertin, 1998). The reduced shear on a single galaxy depends

on the galaxy redshift. However, even without knowing the individual

redshifts of all the background galaxies, we can perform a weak lensing

analysis, assuming the redshift distribution of these background galaxies

(Lombardi et al., 2005). According to Eq. 2.2, once that we have calcu-

lated the reduced shear, we can directly inverted it into the convergence

κ (Eq. 2.3). However, this quantity is defined up to an arbitrary ad-

ditive constant, i.e. the convergence can only be determined up to the

transformation κ = κλ + (1− λ). This issues is known as the mass-sheet

degeneracy. In the weak lensing regime, this degeneracy can be avoided

measuring the magnification that is defined as the ratio of the image area

to the source area, and that can be written as a function of the shear γ

and the convergence κ as well as g:

µ =
1

[(1− κ)2 − γ2]
. (2.5)

There are two popular ways of deriving the lensing mass from tangen-

tial shear: aperture-mass densitometry (Fahlman et al., 1994) and parametrized

model fitting (Umetsu et al., 2011). Aperture-mass densitometry is use-

ful when one attempts to estimate the total projected mass within some

aperture radius without requiring an assumption on the behaviour of the

cluster mass profile. However, this approach is not practical for data sets,

which provides areas smaller than the virial radii of the clusters. The
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second method determines the parameters of analytic halo models from

the observed tangential shear. Several studies, most notably those based

on panoramic deep imaging typically with the SUPRIMEcam on the SUB-

ARU telescope, show that the tangential shear profiles are well fitted by

parametric models such as the NFW profile (Eq. 2.7) (e.g. Jee et al., 2005;

Hoekstra, 2007). This parametric method has the advantage to circumvent

the inherent mass-sheet degeneracy of weak lensing measurements. On

the other hand, the model independent aperture-mass method removes

the mass sheet degeneracy by setting to zero the shear signal in the cluster

outskirts, clearly this is appropriate only when wide and deep imaging

data are available to trace the shear at large radii (i.e. well beyond the

virial radius).

The main systematic problem in weak-lensing mass measurements

comes from the lensing done by excess mass outside the virial radius

but along the line of sight through the cluster. Simulations of large-scale

structure formation suggest that superposition of other mass concentra-

tions limit the accuracy of weak-lensing masses, at least for clusters de-

fined to be within spherical volumes. Projected mass fluctuations along

the line of sight to a distant cluster can be on the order of ∼ 1014 M⊙
(Metzler et al., 2001; Hoekstra, 2001). Therefore, unless one resorts to

staking analyses, the application of the weak lensing method to low mass

clusters remains difficult.

In Chapter 4, we will present constraints derived from high-z RDCS

sample, in combination with the Vikhlinin et al. (2009a) sample. The mass

of five clusters out of nine belonging to the high-z RDCS sample has been

calculated with weak lensing analysis by Jee et al. (2011).

2.2 Clusters X-ray Properties and Surveys

In order to determine the methodology used to build an X-ray galaxy

cluster sample, we will briefly outline the main characteristics of X-ray

emission. Despite the name, the galaxies are not the dominant compo-

nent of galaxy clusters. They can be defined, instead, as Dark Matter

halos, whose gravitational potential wells are filled by the so called the

Intracluster Medium (ICM), and by the bound cluster galaxy populations.

Approximately 80− 85% of a cluster is constituted by the Dark Matter,

whose presence is inferred from gravitational effects on visible matter.

The ICM is a plasma at a temperature of kBT ≃ 2− 10 keV (corre-
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sponding to T ≃ (20− 100)× 106K) and consists, mainly, of ionized hy-

drogen and helium. The ICM constitutes most of the baryonic material in

clusters and provides approximately 15% of the total cluster mass. Only

the 2− 5% of the total mass of a cluster is provided by cool baryons in

stars and galaxies.

Clusters can be considered as “closed boxes” that retain all their gaseous

matter, thanks to their deep gravitational potential well. Such potential

well compresses the associated baryonic gas and heats it to X-ray emit-

ting temperatures. The gas temperature inferred from a cluster X-ray

spectrum therefore indicates the depth of a cluster potential well, and

the emission-line strength in that spectrum indicates the abundance of

elements like iron, oxygen, and silicon in the ICM.

2.2.1 The physics and the structure of the ICM

Felten et al. (1966) first suggested that the X-ray emission from clusters is

due to hot diffuse gas, the ICM, that is in thermal and dynamical equi-

librium with the galaxies and the Dark Matter within the gravitational

potential well.

Since the gas shares the same dynamics of the member galaxies, the

typical atomic velocity is similar to the velocity of the galaxies in the clus-

ter. Thus, the gas, composed mainly of hydrogen, has a temperature of

T ≃ 107K or kBT ≥ 1keV) and the dominant X-ray emission mechanism is

thermal bremsstrahlung (free-free radiation). The bremsstrahlung emis-

sivity for a plasma at temperature T, i.e. the energy per unit time, fre-

quency ν and volume V, is:

ǫ
f f
ν ≡ dL

dVdν
≃ 6.8× 10−38 Z2

i ne ni g
f f (ν, T)

e
− hpν

kBT√
T

erg s−1 cm−3Hz−1,

(2.6)

where ne and ni are the number densities of electrons and ions respec-

tively, Zi is the ion charge, and g f f (ν, T) ∝ ln(9kbT/(4hpν)) is the frequency-
dependent Gaunt factor.

Emission lines of heavy elements are another important feature of the

X-ray spectra of clusters of galaxies. For clusters with temperature greater

than 3 keV the contribution to the luminosity is not relevant, since at

these temperatures most of the atoms are completely ionized. Instead,

line emission and recombination radiation are more important for low



78 CHAPTER 2. SURVEYS OF GALAXY CLUSTERS

temperature clusters, in particular below 2 keV (e.g. Raymond & Smith,

1977).

The most important X-ray line feature for massive clusters is the K-

shell line complex of hydrogen-like iron FeXXVI around 6.7 keV, with

slightly shifted energies for other ionization states. At lower tempera-

tures, additional important line features originate from the Fe L line com-

plex at ∼ 1 keV and ions of O, Mg, Si, S, Ar, Ca, and Ne.

The angle-averaged global spatial structure of the ICM can be de-

scribed by the King model for a self-gravitating, isothermal sphere (King,

1966). If an additional scaling of the ICM density profile with respect to

the underlying Dark Matter profile of the form ρgas ∝ ρDM is allowed,

then the three dimensional β-model for the radial ICM profile ρgas(r) is

obtained (Cavaliere & Fusco-Femiano, 1976)

ρgas(r) =
ρgas,0

[

1+
(

r
rc

)2
]3β/2

, (2.7)

where the core radius rc determines the characteristic extent scale of the

source. The β parameter represents the ratio of their kinetic energy of

galaxies and the thermal energy of the gas,

β ≡ µmpσ2
r

kBT
. (2.8)

where σr denotes the radial velocity dispersion, mp the proton mass, and

µ the mean molecular weight of the gas (µ ≃ 0.6 for a primordial gas

composition). If β parameter deviates from unity, then the galaxies, as

dynamic tracers of the Dark Matter potential, exhibit a different velocity

dispersion with respect to the ICM gas, according to σ2
gal = βσ2

gas.

By relating the gas density profile ρgas(r) to the X-ray emissivity and

by projecting the distribution on the plane of the sky, the observed two

dimensional X-ray surface brightness profile S(r) of the β-model is ob-

tained. The resulting radially symmetric profile

S(Θ) =
S0

[

1+
(

r
rc

)2
]3β− 1

2

(2.9)

contains the fit parameters rc for the angular core radius size, the central

surface brightness S0, and the β value. The β-model is now known not to
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give a precise description of the gas distribution, more accurate models

have been used for example by Vikhlinin et al. (2006)

2.2.2 Identification of clusters and definition of the selec-

tion function

Because diffuse emission from a hot ICM is the direct manifestation of

the existence of a potential well within which the gas is in dynamical

equilibrium with the cool baryonic matter (galaxies) and the dark matter,

the X-ray selection of clusters has the advantage of revealing physically-

bound systems.

By integrating the emissivity over the energy range of the X-ray emis-

sion and over the gas distribution, we obtain typical values for the lumi-

nosity of the order of LX ∼ 1043 − 1045 erg s−1. Therefore, another advan-

tage of X-ray selection of clusters is that given such powerful luminosities,

clusters can be identified as extended sources out to large cosmological

distances. Moreover, being the bremsstrahlung emissivity proportional to

the square of the gas density (ǫ
f f
ν ∝ neni ≈ n2e ), and given the relatively

low surface density of X-ray sources, a cluster in the X-ray band is ob-

served as a peaked, high contrast signature of the central cluster regions.

On the other hand, the concentration of the X-ray emission could rep-

resent a problem for objects with faint flux and a proper detection al-

gorithm should be used to distinguish clusters from point sources. An

algorithm developed specifically to source detection and characteriza-

tion in cluster surveys is based on wavelet techniques. This detection

algorithm was designed to examine a broad range of cluster parameters

(X-ray flux, surface brightness, morphology) and to deal with source con-

fusion especially at faint flux levels. Moreover, a proper characterization

of the telescope properties is crucial in order to detect sources and to

distinguish point sources (mostly AGN and star-forming galaxies) from

extended sources (galaxy clusters and groups).

Once we have identified clusters, in order to use them for cosmological

applications, we need to evaluate the selection function of the survey. In

order to define such selection function, we need to compute the specific

sky coverage A( f (L, z)). This is defined as the effective area covered by the

survey as a function of flux (see Figure 2.3). Because the exposure time,

the background and the PSF1 are not uniform across the field of view of

1The Point Spread Function describes the response of an imaging system to a point
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Figure 2.3: Sky coverage as a function of X-ray flux of several serendipitous

surveys: the Einstein Observatory Extended Medium Sensitivity Survey (EMSS,

solid black curve), the North Ecliptic Pole survey (NEP, dashed green curve), the

ROSAT Deep Cluster Survey (RDCS, dot-dashed blue curve), and the 160 deg2

survey (dot-dashed red curve). Figure from Rosati et al. (2002).

X-ray telescopes, effects such as reflectivity and vignetting cause the ge-

ometric area of a telescope to be reduced to a smaller effective area. The

PSF degrades at increasing off-axis angles and, as a result, the sensitivity

to source detection varies significantly across the survey area so that only

bright sources can be detected over the entire solid angle of the survey,

whereas at faint fluxes the effective area decreases. The background is

contributed by two main components: a part is due to the internal or

instrumental background and another part is due to unresolved astro-

physical X-ray sources like cosmic X-ray background and Galactic X-ray

background.

object or point source. In more general terms the observed image of each source is the

result of the convolution between the PSF and the original image of the source. For

extended sources the larger is the real image, the larger is the observed one with respect
to the PSF. So an effective separation between point sources and extended sources must

rely on a precise determination and characterization of the PSF as a function of the
energy and the off-axis angle.
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In order to be sure that the sample is complete, in all flux-limited

samples of extended sources (e.g. optical galaxy surveys), one has to

check that the sample does not become surface brightness (SB) limited

at very faint fluxes. As the source flux decreases, clusters with smaller

mean SB have a higher chance of being missed because their signal-to-

noise ratio is likely to drop below the detection threshold. SB dimming

at high redshifts (SB ∝ (1 + z)−4) can thus create a serious source of

incompleteness at the faintest flux levels. This depends critically on the

steepness of the SB profile of distant X-ray clusters and its evolution.

Once that the selection function is defined, it is possible to compute

the maximum search volume, Vmax, within which a cluster of a given

luminosity is found in that survey:

Vmax =
∫ zmax

0
A[ f (L, z)]

(

dL(z)

1+ z

)2 c dz

H(z)
. (2.10)

In this equation A( f ) is the survey sky coverage, and dL(z) is the lumi-

nosity distance2, H(z) (Eq. 1.10) is the Hubble constant at z, and zmax is

the maximum redshift out to which the flux of an object of luminosity L

lies above the flux limit.

To date, there are no X-ray surveys which are not based on previous

ROSAT observations and eventual optical follow-up to derive redshift and

thus luminosities. The most recent constraints on cosmological parame-

ters from clusters, are based on the Chandra follow-up of 400 deg2 ROSAT

serendipitous survey and of the All-Sky Survey (Vikhlinin et al., 2009a,b;

Mantz et al., 2010a). Moreover X-ray surveys of clusters have been build

from the compilation of serendipitous medium and deep-exposure ex-

tragalactic pointings from Chandra and XMM-Newton telescope (Boschin,

2002; Barkhouse et al., 2006; Pierre et al., 2011; Fassbender et al., 2011).

X-ray redshift

Although all the advantages of X-ray selection of the galaxy clusters and

the ability to define flux-limited sample, the main disadvantages of X-ray

2The luminosity distance, dL, is defined by the relation between the flux f and the

luminosity L: dL ≡
√

L/(4π f ). It turns out that this is related to the angular diameter
distance dA by dL = (1+ z)2dA (Weinberg, 1972). This relation follows from the fact

that the surface brightness of a receding object is reduced by a factor (1+ z)−4, and the
angular area goes down as d−2

A .
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surveys is that it is still not possible to measure cluster redshifts from X-

ray observations in a survey without recurring to time consuming follow-

up. The detection of the Fe line could in principle provide a way to mea-

sure such redshifts in X-ray band. A few redshifts have been measured

using X-ray spectral analysis (e.g. Lamer et al., 2008), and first studies

confirm the agreements between X-ray and optical redshift (Bignamini,

2010). However this approach has never been used systematically in clus-

ter surveys. The main reason is that most of the existing X-ray cluster

surveys are based on source samples selected by ROSAT (e.g Voges et al.,

1999; Rosati et al., 1998), whose energy range is 0.1− 2.4 keV, hence does

not over the hard band where the Fe lines lie (Yu et al., 2011). A sys-

tematic study of the methods and the limits in measuring X-ray based

redshifts from archival Chandra observations of clusters at 0.15 < z < 1.4

has shown the power of this methodology (Yu et al., 2011). To date, most

ROSAT clusters have been confirmed through optical imaging and spec-

troscopic observations. To make a land mark progress in this area a X-ray

survey mission combining a large collecting area and good angular reso-

lution over ∼ 1deg2 would be needed (Rosati et al., 2011). In particular, in

Chapter 3, we will explain the case of the Wide Field X-ray Telescope, for

which we have derived forecast for constraints on cosmological parame-

ters.

2.2.3 Mass estimation: Cluster Scaling Relation

Assuming spherical symmetry, the condition of hydrostatic equilibrium

connects the local gas pressure p to its density ρgas according to

dp

dr
= −GM(< r)ρgas(r)

r2
. (2.11)

By inserting the equation of state for a perfect gas, p = ρgas kBT/µmp, one

can express M(< r), the total gravitating mass within r, as

M(< r) = − kBTr

Gµmp

(

dlogρgas

dlogr
+

dlogT

dlogr

)

. (2.12)

The simplest model that explains the physics of the ICM is based on

the assumption that gravity only determines the thermodynamical prop-

erties of the hot diffuse gas. Since gravity does not have a preferred scale,

we expect clusters of different sizes to be the scaled version of each other
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as long as gravity only determines the ICM evolution. This is the rea-

son why the ICM model based on the effect of gravity only is said to be

self-similar.

More specifically, the self-similar model for the ICM is based on the

following assumptions:

- The internal structure of clusters of different mass is similar.

- All clusters identified at a given redshift have the same characteristic

density that scales with the critical density of the Universe as:

〈ρ〉 = GM∆c

R3
∆c

=
4π

3
ρc(z)δ . (2.13)

- The ICM evolves in the gravitational potential of the dark matter;

the gas mass fraction is thus constant, fgas = Mgas/M∆,c.

- The ICM is in approximate hydrostatic equilibrium, allowing appli-

cation of the virial theorem. This assumption imply that power-law

relations exist between a X-ray observable, X, and the mass M at

redshift z, such that X ∝ A(z)Mα . In this scenario the gas mass and

total mass scale as Mgas ∝ M∆c ∝ T3/2E−1(z). With the further as-

sumption of bremsstrahlung emission, the X-ray luminosity scales

as LX ∝ E(z)T2.

In 2006, Kravtsov et al. proposed a new X-ray mass estimator: the

quantity YX defined as

YX = TX × Mgas . (2.14)

YX approximates the total thermal energy of the ICMwithin R∆c , and also

the integrated low-frequency Sunyaev-Zeldovich flux (Sunyaev & Zeldovich,

1972). The total thermal energy, YX, was found in simulations to be a very

good indicator of the total cluster mass. In the simplest self-similar model

YX scales with the cluster mass as

M∆c ∝ Y3/5
X E−2/5(z) (2.15)

Deviations with respect to the relations that have been derived in this

Section witness the presence of more complex physical processes, beyond

gravitational dynamics only, which affect the thermodynamical proper-

ties of the diffuse baryons and, therefore, the relation between observ-

ables and cluster masses.
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Hydrodynamic simulations show that the expected scaling is valid.

Moreover, the relation shows a smaller scatter in M∆c for fixed Yx than,

e.g., the M∆c − TX relation. The primary reason is that the total thermal

energy of the ICM is not strongly disturbed by cluster mergers. The

M∆c − YX relation also appears to be not very sensitive to the effects

of gas cooling, star formation, and energy feedback (Stanek et al., 2010;

Fabjan et al., 2011). Gas cooling tends to remove from the ICM the lowest-

entropy gas, increasing the average temperature of the remaining gas and

thus affecting TX and Mgas in opposite ways.

2.2.4 Phenomenological scaling relations

A number of observational determinations now exist, pointing toward

a relation LX ∝ Tα, with α ≃ 2.5 − 3 (Maughan et al., 2006), possibly

flattening towards the self-similar scaling only for the very hot systems

with T > 10 keV. The scatter around the best-fitting relation, generally

non negligible, is significantly reduced after excising the contribution to

the luminosity from the cluster cooling regions (Maughan, 2007).

As for the LX-M∆ relation, observation probed that exist a well defined

relation between X-ray luminosity and mass (Figure 2.4), although with

some scatter, thus confirming that LX can be used as a proxy of the cluster

mass. However, the slope of the relation is found to be steeper than the

self-similar scaling, thus consistent with the observed LX-T relation.

As for the YX - M∆ relation, Maughan (2007) found that it follow very

closely the expected self-similar scaling also for unrelaxed clusters, since

YX is so insensitive to the cluster dynamical state (Figure 2.5).

2.3 Clusters Microwave properties and surveys

The hot gas in galaxy clusters can be detected not only in the X-ray

band but also in the microwave, through its effects on the CMB. The

CMB spectrum is nearly a perfect black body spectrum with a temper-

ature of about 2.7 K (Mather et al., 1990). Soon after the discovery of

this background radiation, Weymann (1966) computed how the Comp-

ton scattering would distort its spectrum, shifting some of the microwave

photons to higher energies as they passed through hot intergalactic gas.

Then Sunyaev & Zeldovich (1970) predicted that ICM electrons would

produce the distortions into the CMB spectrum. This phenomenon is
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Figure 2.4: LX − M200 relation for the low-z HIFLUGCS clusters and the high-

z WARPS systems. Masses were measured within R200 assuming isothermality

and luminosities within the same radius were scaled by the evolution predicted

by the self-similar model. The dot-dashed line is the best fit to the unscaled

high-redshift clusters and can be used to judge the significance of the self-similar

scaling. Figure from Maughan et al. (2006)
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called SZ effect (for a full description of the SZ effect see Birkinshaw

(1999); Narayan & Bartelmann (1996); Bartelmann (2010)). The SZ sig-

nal can be divided into a kinetic and a thermal effect, due to the cluster

motion and the thermal motions of ICM electrons with respect to the mi-

crowave background, respectively. Since the kinetic SZ is a second-order

effect, only the thermal one is considered in the follow.

To lowest order, the shape of the distorted spectrum depends on a

single parameter proportional to the product of the probability that a

photon passing through the cluster will suffer Compton scatter and the

typical amount of energy gained by a scattered photon. Thus the so called

Compton parameter can be read as:

y =
∫

kBT

mec2
neσT dl , (2.16)

where σT is the Thomson cross-section and the integral is over a line

of sight through the cluster. Because the optical depth of the cluster is

small, the change in microwave intensity at any frequency is linearly pro-

portional to y ≪ 1, with reduced intensity at long wavelengths and en-

hanced intensity at short wavelengths. The Compton parameter y, thus,

measures the integral of the gas pressure along the line of sight and sets

the amplitude of the SZ signal. This parameter does not suffer from

cosmological surface brightness dimming, unlike the observation in the

optical and X-ray bands.

Hence SZ surveys are expected to provide clean cluster samples over

a wide range of redshifts, and can be considered in this sense close to an

unbiased mass-limited selection sample. Currently the first SZ deep sur-

veys covering hundreds of square degrees and capable of detecting many

tens to hundreds of clusters, are performed by the South Pole Telescope

(SPT; Carlstrom, 2006) and the Atacama Cosmology Telescope (ACT;

Marriage & Atacama Cosmology Telescope Team, 2010). These surveys

are accumulating data of first SZ selected new clusters and microwave

observation of previously known clusters. Moreover, the Planck mission

is now covering the entire sky, however, because clusters above z ∼ 0.5

have a typical angular size of 1′, Planck’s sensitivity to clusters will fall

off at high redshift due to its larger beam (5’ FWHM at 150 GHz versus

1’ for SPT and 2’ for ACT).

In Figure 2.6 it is shown a comparison between the limiting mass as

a function of redshift, expected for an X-ray and for a SZ cluster sur-

vey. While the standard flux dimming with the luminosity distance,
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Figure 2.6: Minimum cluster virial mass detected in X-ray surveys (RDCS and

XDCP) and in the SZ SPT survey.

fX ∝ d2L(z), causes the limiting mass to quickly increase with distance

for the X-ray selection, this limiting mass has a much less sensitive de-

pendence on redshift for the SZ selection. This is the reason why SZ

surveys are generally considered as essentially providing mass-limited

cluster samples.

2.3.1 SZ-Mass scaling relation

From the Compton parameter y, it is possible to define the integrated SZ

signal parameter

YSZ =
∫

y dA ∝

∫

neT dV , (2.17)

that describes the total thermal energy of the electrons, from which one

can derive the total gas mass times its the electron temperature within a

given region of space. Assuming that thermal energy results solely from

gravitational collapse, it is possible to derive self-similar scaling between

YSZ and cluster mass. Assuming virial and hydrostatic equilibrium, the

cluster gas temperature can be related to the mass as explained in Section
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2.2.3. Under assumptions of an isothermal ICM,

YSZ ∝ d−2
A (z) M T ∝ d−2

A M5/3 E(z)2/3 . (2.18)

where dA(z) is the angular diameter distance to the cluster.

Figure 2.7 shows Y200,md
2
AE

−2/3 against halo mass M200,m (Hand et al.,

2011). The expected YSZ-M relation as determined from numerical simu-

lations is shown as a solid line and is given by

Y200,md
2
AE

−2/3 = 10−γ

(

M200,m

1014 M⊙

)α

, (2.19)

where the best-fit parameters are α = 1.76 and γ = 5.74. These pa-

rameters are obtained from the microwave sky simulations described in

Sehgal et al. (2010), where halos of mass M200,m > 2.82× 1013 M⊙ have

been considered, and the redshift range of the clusters is 0.15 < z < 0.50.

The data are obtained from subset of the ACT 2009 equatorial data at the

positions of luminous red galaxies (LRGs) measured by the Sloan Digital

Sky Survey (SDSS) (Hand et al., 2011). The overall normalization of the Y-

M relation appears lower than expected. As the SZ effect traces the ther-

malized cluster pressure, the possibility exists that there are significant

non-thermal pressure components supporting the halo mass. Moreover,

because the SZ signal is proportional to the total thermal energy of a clus-

ter and is thus less affected by physical processes in the cluster core the

scatter in the Y-M is of order 5− 10% according to simulation provided

by Sehgal et al. (2010).

The power of the SZ effect for finding distant clusters suffer from an

important drawback, the contamination of the signal from foreground/background

structures. Along any line of sight through the entire observable universe,

the probability of passing within the virial radius of a cluster or group of

galaxies is of order unity (e.g. Voit et al., 2001). In particular, small ha-

los are not resolved in current SZ observations and their integrated con-

tribution may provide a significant contamination. Using cosmological

hydro-dynamical simulations, it has been shown that the scatter in the

Y-M relation is significantly increased in projection (White et al., 2002).

Part of the scatter is due to the different redshifts at which clusters seen

in projection are placed. This contribution to the scatter can be removed

once redshifts of clusters are known. Unfortunately it is not possible to

measure the redshift of a cluster from the SZ survey and a optical or X-ray

follow-up observation are always necessary.
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Figure 2.7: Y200,m is plotted against cluster masses for each luminosity bin for

stacking of a subset of the ACT 2009 equatorial data at the positions of luminous

red galaxies (LRGs) measured by the Sloan Digital Sky Survey (SDSS). The two

sets of points shown use separate mass estimates for the four LRG luminosity

bins. The black circles correspond to mass estimates derived from analysis of

halo bias. The red triangle correspond to mass estimates derived from weak

gravitational lensing measurements (Reyes et al., 2008). The solid line shows

the expected model for the Y-M relation as determined from the microwave sky

simulations of Sehgal et al. (2010). Figure from Hand et al. (2011).



Chapter 3

Forecasting cosmological

constraints from future cluster

surveys

As discussed in Chapter 1, clusters of galaxies have long been recog-

nized as potentially powerful probes of the nature of DE and cosmolog-

ical models in general (e.g. Allen et al., 2011; Lombriser et al., 2010). In

Section 1.10, we summarized constraints obtained from clusters on cos-

mological parameters over the last decade. Within the non-Gaussian sce-

nario for the initial perturbation density field, at present, analyses of the

CMB data provide the tightest upper limits on deviation from Gaussian-

ity. Such analyses based on the WMAP experiment converge to indicate

consistency with the Gaussian assumption (e.g., Komatsu et al. (2011) and

references therein; see also Yadav & Wandelt (2008)). In the contest of

galaxy clusters, Jimenez & Verde (2009) have analysed the effect of non-

Gaussianity on the population of massive high-redshift clusters, like the

one discovered by Jee et al. (2009) at z ≃ 1.4.

While the first Sunyaev-Zeldovich (SZ) surveys have now started pro-

ducing cluster samples, (e.g., Marriage & the ACT Team, 2011; Williamson & the SPT Team,

2011; Planck Collaboration, 2011), the next generation of X-ray and opti-

cal surveys like the forthcoming eROSITA1, DES2, and EUCLID3 satellites

will increase by orders of magnitude the statistics of detected clusters

further extending the redshift range over which they trace the growth of

1http://www.mpe.mpg.de/heg/www/Projects/erosita/index.php
2http://www.darkenergysurvey.org/
3http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
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cosmic structures. Future higher sensitivity X-ray telescopes, such as the

proposed Wide Field X-ray Telescope (WFXT)4 will have the capability of

measuring mass proxies for such clusters out to z ∼ 2. Such large cluster

surveys have the potential of placing very tight constraints on different

classes of DE models, and possibly finding signatures of departures from

the Gaussian prescription for the initial density fluctuation field.

In view of these future large surveys to be carried out with the next

generation of telescopes, it is crucial to quantify the constraining power

of such surveys, and to understand the optimal survey design to best

constraint specific classes of cosmological models.

3.1 Forecasts on DE models

Several studies have dealt with constraints of DE models from future

cluster surveys focusing on the impact of uncertainties in cluster mass es-

timates (e.g. Battye & Weller, 2003; Majumdar & Mohr, 2004; Lima & Hu,

2005, 2007; Cunha, 2009; Cunha & Evrard, 2010; Basilakos et al., 2010).

All these analyses generally assume that, when a cluster is identified

and included in a survey, the observable (i.e., X-ray flux, optical rich-

ness) on which the detection is based can be related to the actual cluster

mass through a suitable relation, whose functional form is assumed to be

known and depends on a set of additional parameters.

A more conservative approach would instead require that for all the

clusters included in a survey detailed follow-up observations are carried

out to calibrate suitable and robust mass proxies. As for X-ray surveys,

such proxies can be computed when a relatively large number of photons

is available. For instance, while measuring flux for an X-ray extended

source requires only ∼ 50 photons, or less for missions with low back-

ground, the measurement of robust mass proxies require ∼ 103 photons.

The possibility to define a flux-limit down to which measuring accurate

mass proxies for all clusters allows one to set robust priors on the scaling

relations between cluster mass and observables, which is one of the main

source of uncertainty in the cosmological application of galaxy clusters

(e.g., Albrecht et al., 2009).

In this Chapter, we will derive forecasts for constraints on cosmolog-

ical parameters focusing on the EoS of DE ones, as obtained from future

X-ray and optical surveys. The X-ray surveys are the ones to be carried

4http://www.wfxt.eu/
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out with a telescope (WFXT), see Section 3.4) with high-enough sensi-

tivity to readily provide robust measurements of mass proxies for & 104

clusters. The great advantage of having a similar survey is that there is

no need to assume any external follow-up observation to measure mass

proxies and cluster redshift for a large subset of identified clusters.

Adopting the specifications of the WFXT surveys, we compute cosmo-

logical forecasts using the well-established Fisher Matrix approach (e.g.,

Dodelson, 2003), to combine information from cluster number counts and

large-scale clustering. We will quantify the constraints expected on DE

models and their dependence on the knowledge of the relation between

X-ray observables and cluster mass, for a range of survey strategies (i.e.

depth vs. sky coverage).

In the course of this study, we will discuss how number counts and the

power spectrum of the large-scale distribution of clusters convey cosmo-

logical information. We will show how the detection of Baryonic Acous-

tic Oscillations (BAOs) and redshift space distortions (RSDs) on cluster

scales can significantly contribute to constrain cosmological parameters,

similarly to a number of previous studies based on the large scale distri-

bution of galaxies (e.g., Guzzo et al., 2008; Rassat et al., 2008; Stril et al.,

2010; Wang et al., 2010).

We will compare the results obtained with WFXT surveys with cos-

mological constraints provided by EUCLID mission (Laureijs et al., 2011)

based on unprecedented optical/near infrared imaging and spectroscopic

survey (see Section 3.5). The imaging channel of this experiment will

measure the shapes over a billion galaxies, while a slitless spectroscopic

survey will yield accurate redshifts of tens of millions of galaxies. Photo-

metric redshifts will also be available with combination of NIR EUCLID

photometry and ground-based optical photometry, and will be calibrated

with 107 spectroscopic redshifts. This data set will also be very effective

in finding clusters at z ≈ 0.5− 2, whose masses will be calibrated with a

combination of EUCLID-based weak gravitational lensing measurements

and dedicated follow-up programs.

3.1.1 DE models.

As for the DE EoS, the reference analysis will be carried out for the stan-

dard parametrization, originally proposed by Linder (2003),

w(a) = w0 + wa(1− a) , (3.1)
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where a is the cosmic expansion factor. This parametrization has been

used in the Dark Energy Task Force reports (DETF; Albrecht et al., 2006,

2009) to assess the constraining power of different cosmological experi-

ments. We will refer to this hereafter as standard DE model.

Albrecht et al. (2006) presented forecasts on the constraints on the

w0 and wa parameters from redshift number counts of cluster surveys.

Mantz et al. (2010a) derived constraints on these parameters from the ob-

served evolution of the cluster X-ray luminosity function, using a combi-

nation of nearby clusters selected from the RASS (Truemper, 1993; Ebeling et al.,

1998; Böhringer et al., 2004) and medium-distant clusters selected from

the (RASS based) MACS survey (e.g. Ebeling et al., 2010). An update on

the constraints available at present on these parameters has been pre-

sented by Komatsu et al. (2011) using a combination of the 7-year WMAP

CMB data, SN-Ia, Big-Bang Nucleosynthesis results and BAOs traced by

the large-scale galaxy distribution.

Furthermore, we will also assess the constraining power of X-ray clus-

ter surveys for the class of quintessence models, called Early Dark Energy

(EDE) (Wetterich, 2004). In these models, DE drives not only the acceler-

ated expansion of the Universe at relatively low redshift, but also provides

a non-negligible contribution at early times, i.e. before the last scattering

surface (Doran & Wetterich, 2003). A parametrization of a class of EDE

models has been proposed byWetterich (2004) as a function of the amount

of DE at z = 0, the present equation of state parameter, w0, and an aver-

age value of the energy density parameter at early times, ΩDE. The EoS

parametrization that we choose is the one studied by Grossi & Springel

(2009):

w (z) =
w0

(1+ C ln(1+ z))2
. (3.2)

In the above relation the quantity C is given by

C =
3w0

ln
(

1−Ωe,de

Ωe,de

)

+ ln
(

1−Ωm,0

Ωm,0

) , (3.3)

and characterizes the redshift at which a constant EoS turns into a dif-

ferent behaviour according to the presence of DE at early times. Since

both EDE and ΛCDMmodels have to reproduce the observed cluster

abundance at low redshift, in EDE models we expect structures to form

earlier and to have slower evolution of the halo population that in the

ΛCDMone.



3.2. FORECAST ONNON-GAUSSIAN PRIMORDIAL DENSITY FLUCTUATIONS95

Alam et al. (2011) used the EDE parametrization by Corasaniti & Copeland

(2003) to forecast constraints on these models from the abundance of X-

ray clusters expected in the eROSITA survey (e.g. Predehl et al., 2007)

and from the SZ power spectrum from the South Pole Telescope (SPT,

Staniszewski et al., 2009). In our analysis, we use a different parametriza-

tion of EDE models, derive forecasts for high-sensitivity X-ray surveys,

and particularly include the constraints from the redshift-space power

spectrum of the large-scale distribution of clusters.

3.2 Forecast on Non-Gaussian primordial den-

sity fluctuations

Future surveys should cover a large enough volume at high redshift to

test non-Gaussianity in the regimes where its effects are clearer, namely

the high-mass tail of the mass function and the large-scale power spec-

trum of the cluster distribution. Oguri (2009) followed the self-calibration

approach by Lima & Hu (2005) (see also Majumdar & Mohr, 2004) to

forecast the capability of future optical cluster surveys to constrain non-

Gaussian models. This study showed that combining number counts and

clustering of galaxy clusters can potentially provide quite strong con-

straints on deviations from Gaussianity. Fedeli et al. (2009) and Roncarelli et al.

(2010) presented predictions from the eROSITA X-ray survey and from

the Sunyaev-Zeldovich SPT survey. While their analyses confirmed the

potential of these surveys to provide interesting constraints on non-Gaussian

models, they did not include detailed forecasts on the constraints on non-

Gaussian models and a detailed assessment of the effect of uncertainties

in the scaling relations between cluster masses and observables. A further

study from Pillepich et al. (2011) used Fisher-Matrix analysis to forecast

constraining power of eROSITA on the cosmological parameters together

with the X-ray mass-observable scaling relations.

We derive forecasts, based on the Fisher-Matrix approach, on the capa-

bility of future cluster surveys to constrain deviations from Gaussian per-

turbations. Our analysis differs from that by Oguri (2009) for the method

to include information from large-scale clustering. Oguri (2009) adopted

the approach by Lima & Hu (2005) where clustering is included by ac-

counting for fluctuations of cluster counts within cells having a fixed
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angular size. This implies that, at each redshift, clustering information

is restricted to one physical scale. In our analysis, we follow the ap-

proach originally presented by Tegmark (1997) (see also Feldman et al.

1994; Majumdar & Mohr 2003), in which the clustering Fisher-Matrix is

computed for the allowed range of wavenumbers, by weighting them ac-

cording to the effective volume covered by the surveys.

In principle, the method used in our analysis can be applied to any

cluster surveys, including SZ ones. Our method only requires a well

defined selection function and calibrated mass proxies. The results pre-

sented in this Chapter have been published in two papers on the “Monthly

Notices of the Royal Astronomical Society”: Sartoris et al. (2010) and

Sartoris et al. (2011). Moreover, the analysis carried out for the EUCLID

mission has been included in the Mission Definition Document and will

be part of a paper in preparation.

3.3 The analysis method

We use the Fisher Matrix (FM hereafter) formalism to understand how ac-

curately we can estimate the values of a vector of parameters θ for a given

model from one or more data sets, under the assumption that all param-

eters follow a Gaussian distribution (e.g., Cash, 1979) (see Appendix A).

The information FM is defined (e.g. Heavens, 2009; Dodelson, 2003) as

Fαβ ≡ −
〈

∂2 ln L

∂θα∂θβ

〉

, (3.4)

where L is the likelihood of an observable, in our case the number of

galaxy clusters in a given redshift and mass range or the averaged power

spectrum of the cluster distribution.

3.3.1 Number counts

Following the approach of Holder et al. (2001) and Majumdar & Mohr

(2003), the FM for the number density of clusters, Nl,m, within the l-th

redshift bin and m-th bin in observed mass Mob, can be written as

FN
αβ = ∑

l,m

∂Nl,m

∂pα

∂Nl,m

∂pβ

1

Nl,m
, (3.5)
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where the sums over l and m run over redshift and mass intervals, re-

spectively. With this notation, it is Mob
l,m=0 = Mthr(z), where Mthr(z) is

defined as the threshold value of the observed mass for a cluster to be in-

cluded in the survey. According to the specific selection function of each

specific survey, the value of Mthr(z) generally depends on redshift (see

Figures 3.2 and 3.5). In this case, the number of mass bins can change

with redshift accordingly.

We write the number of clusters expected in a survey having a sky

coverage ∆Ω with observed mass between Mob
l,m and Mob

l,m+1 and redshift

between zl and zl+1 as

Nl,m = ∆Ω

∫ zl+1

zl

dz
dV

dzdΩ

∫ Mob
l,m+1

Mob
l,m

dMob

Mob

∫ ∞

0
dM n(M, z) p(Mob‖M) . (3.6)

In the above equation dV/(dz dΩ) is the cosmology-dependent comoving

volume element per unity redshift interval and solid angle, n(M, z) the

mass function, i.e. the number density of clusters with true mass M at

redshift z (see Section 1.5).

We assume in the following the expression by Tinker et al. (2008) for

the halo mass function in the case of Gaussian perturbations. We stress

that while using the best-calibrated mass function is in fact important

when deriving cosmological constraints from real data (e.g., Wu et al.,

2009), it has only a minor impact when deriving forecasts on cosmologi-

cal constraints. Indeed, what matters for the latter is the total number of

clusters expected in a given cosmological model, which is far more sensi-

tive to the choice of reference cosmological and observable-mass relation

parameters than to the details of the fitting function.

As for the case of non-Gaussian perturbations, Grossi et al. (2009) have

shown that analytic expressions of the cluster mass function provided by

Matarrese et al. (2000) and LoVerde et al. (2008) are in agreement with N-

body cosmological simulations, when the linear threshold for collapse is

corrected for ellipsoidal density perturbations, according to ∆c → ∆c
√
q,

with q = 0.75. We adopted this correction when we calculate forecasts for

constraints on deviations from Gaussianity.

Following Lima & Hu (2005), we assign to each cluster with true mass

M a probability p(Mob‖M) of having an observed mass Mob, as inferred

from a given mass proxy. Under the assumption of a log-normal distri-

bution for the intrinsic scatter in the relation between true and observed
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mass, with variance σ2
lnM, the expression for this probability is

p(Mob‖M) =
exp[−x2(Mob)]
√

(

2πσ2
lnM

)

, (3.7)

where

x(Mob) =
lnMob − BM − lnM

√

(

2σ2
lnM

)

. (3.8)

We characterize the relation between true and observed mass not only

with an intrinsic scatter, but also with a systematic bias in the mass es-

timate, whose fractional value is given by BM. By inserting Eq.(3.7) into

Eq.(3.6) for the cluster counts in a given mass and redshift interval, we

obtain

Nl,m =
∆Ω

2

∫ zl+1

zl

dz
dV

dzdΩ

∫ ∞

0
dM n(M, z)

× [erfc(xm)− erfc(xm+1)] (3.9)

with xm = x(Mob
l,m) and erfc(x) the complementary error function.

We note that the possibility of factorising the sky-coverage outside the

integration in Eq. 3.9 relies on the assumption that clusters are detected

over the same area of the sky down to the survey completeness limit. The

above expression can be easily generalized to include the possibility of a

flux dependent sky coverage.

We remark that we neglect clustering contribution to the noise (i.e.

cosmic variance) for all the surveys considered in our analysis.

Finally, we assume that errors on the cluster redshift measurements

can be ignored (see Lima & Hu 2007 for a presentation of a method to

include the effect of redshift errors in the computation of the FM for

cluster number counts).

3.3.2 Power spectrum

In order to include in our analysis the information from the clustering of

galaxy clusters, we follow the approach by Majumdar & Mohr (2004). We

define the Fisher Matrix for the power spectrum of galaxy clusters as

Fαβ =
1

(2π)2 ∑
i,l,m

∂ ln P̄cl(km, zl, µi)

∂pα

∂ ln P̄cl(km, zl, µi)

∂pβ
V

e f f
l,m k2m ∆k ∆µ, (3.10)
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where the sums in l and m run over redshift and wavenumber k bins, re-

spectively, and the sum in i run over the angle µ (Tegmark, 1997; Feldman et al.,

1994). The quantity µ is the cosine of the angle that k makes with the line

of sight. As we explained in Section 1.7, the power spectrum gains this an

angular dependence when we take into accounts the effect of the Redshift

Space Distortions. In the above equations P̄cl is the average cluster power

spectrum calculated within the given redshift interval,

P̄cl(km, zl, µi) =

∫ zl+1

zl
dz dV

dz Ñ2(z) Pcl(k, z, µ)
∫ zl+1
zl

dz dV
dz Ñ2(z)

. (3.11)

where Ñ =
∫ ∞

0 dM n(M, z) [erfc(xm)− erfc(xm+1)]. This amounts to weight

the cluster power spectrum, Pcl(k, z, µ), according to the square of the

number density of clusters, N(z), that are included in the survey at red-

shift z. This linear bias in Eq. 1.49 is weighted here by the mass function

and defines the effective bias

be f f (z, k) =

∫ ∞

0 dM n(M, z) erfc[x(Mthr)] b(M, z, k)
∫ ∞

0 dM n(M, z) erfc[x(Mthr)]
. (3.12)

For the linear bias, we assume in the analysis the prescription from Tinker et al.

(2010). The bias b(M, z, k) acquires the dependence on the wavenumber k

in case of non-Gaussian models (see Section 1.9). In order to obtain agree-

ment with the results of numerical simulations it is necessary to correct

the linear overdensity for collapse, this time according to ∆c → ∆cq with

q = 0.75 (Grossi et al., 2009). Semi-analytic results, with this correction,

are also in agreement with the numerical results by Pillepich et al. (2010)

(see also Desjacques et al. 2009). We adopted this correction in the non-

Gaussian forecasts calculation.

Finally, the quantity Ve f f (k, z) in Eq.(3.10) is the effective volume ac-

cessible by the survey at redshift z at wavenumber k. This effective vol-

ume is weighted by the shot noise level 1/N(z), so that

Ve f f (k, z) = V0(z)

[

Ñ(z)P̄cl(k, z, µ)

1+ Ñ(z)P̄cl(k, z, µ)

]2

, (3.13)

with V0(z) the total comoving volume covered by the redshift bin centred

on z. In this way, constraints at redshift z are mostly contributed by wave

modes k, which maximize Ñ(z)P̄cl(k, z) and make Ve f f approach V0.
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An alternative approach to include clustering information in deriving

FM survey forecasts has been proposed by Lima & Hu (2005) and applied

also by Oguri (2009) for constraints on non-Gaussian models from cluster

surveys. In this approach, one makes a partition of the sky area covered

by a survey into regular cells of a fixed angular size and then computes

the fluctuations in the cluster counts within such cells. Since this method

does not explicitly include the covariance between counts within different

cells, it only samples clustering at a fixed angular scale (i.e. at a single

physical scale for a fixed redshift). On the other hand, extracting the full

information content in the scale dependence of the power spectrum is

quite important when constraining non-Gaussian models, whose unique

signature is given by the scale-dependent bias. Cunha & Evrard (2010)

used the count-in-cell approach by also including the information from

the covariance. Therefore, the information on the large-scale power spec-

trum, in the count-in-cell approach, is conveyed by the covariance terms.

In our approach the different scales are weighted by the effective volume,

defined by Eq.(3.13).

As for the power spectrum transfer function, we adopt the expression

for Cold Dark Matter provided by Eisenstein & Hu (1998), which includes

the effect of baryonic acoustic oscillations (BAOs). In order to quantify the

information carried by the BAO detection, we use also, where specified,

the power spectrum shape from Eisenstein & Hu (1998), which smoothly

interpolates through the oscillations. Moreover, we study the geometric

information carried by the shape of the power spectrum by describing it

with a general free parameter Γ, and thus ignoring its CDM specific rela-

tion Γ = Ωmh.

3.3.3 Reference values for the cosmological parameters

We assume the following reference values for the cosmological param-

eters, consistent with the WMAP-7 best-fitting model (Komatsu et al.,

2011): Ωm = 0.28 for the present-day matter density parameter, σ8 = 0.81

for the normalization of the power spectrum, Ωk = 0 for the contribution

from the curvature, Ωb = 0.046 for the contribution of baryons to the

density parameter, h = 0.70 for the Hubble parameter, n = 0.96 for the

primordial spectral index and fNL = 0 for the non-Gaussianity param-

eter. For the DE EoS parametrization of Eq. 3.1, we take w0 = −0.99

and wa = 0 as reference values, while for the EDE model of Eq. 3.2
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we assumed the reference values of w0 = −0.93 and Ωe,de = 2 10−4

(Grossi et al., 2009). We point out that for the reference EDE model, we

adopt the same values of the non-DE parameters, including σ8. This im-

plies that both models are chosen to have the same low-redshift normal-

ization as to provide the same cluster number counts (see also Figure 3.8),

instead of being normalized to CMB. Therefore, we have in total nine cos-

mological parameters, which are left free to vary in the computation of

the number counts and power spectrum Fisher Matrices defined in Eqs.

(3.5) and (3.10).

3.3.4 Planck CMB experiment

Where stated, the results presented in the following are based on adding

the Fisher Matrix for the Planck CMB experiment to those from the clus-

ter surveys. This prior probability has been computed for each the two

reference DE models based on Eqs. (3.1) and (3.2). We derive the cosmo-

logical constraints from Planck following the description laid out by the

DETF Albrecht et al. (2009) and use the method described in Rassat et al.

(2008). We conservatively assume that we will only use the 143 GHz

channel as science channel. This channel has a beam of θfwhm = 7.1′ and
sensitivities of σT = 2.2µK/K and σP = 4.2µK/K. We take fsky = 0.80 as

the sky fraction in order to account for galactic foregrounds. We use as

a minimum ℓ-mode, ℓmin = 30 in order to avoid problems with polariza-

tion foregrounds. As described in the DETF report (Albrecht et al., 2009),

we choose as fiducial parameter set ~θ = (ωm, θS, ln AS,ωb, nS, τ), where

θS is the angular size of the sound horizon at last scattering, ln AS is the

logarithm of the primordial amplitude of scalar perturbations and τ is the

optical depth due to reionization. After marginalization over the optical

depth, we then calculate the Planck CMB Fisher matrix in the param-

eters (Ωm,Ωde, h, σ8,Ωb,w, nS) by using the appropriate Jacobian of the

involved parameter transformation (Rassat et al., 2008). Here w is a two-

component vector which includes the parameters of the two DE models

considered: w = (w0,wa) for the model of Eq. 3.1 and w = (w0,Ωe,de) for
the model of Eq. 3.2.

We point out that the Planck FM is computed for Gaussian pertur-

bations. Therefore, while it adds quite strong constraints on the other

cosmological parameters, especially on the curvature, it does not add any

constraints on fNL.
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3.4 Characteristics of the WFXT surveys

We derive here forecasts for different X-ray surveys inspired to the strat-

egy devised for the Wide Field X-ray Telescope (WFXT5), proposed to

the Astro-2010 Decadal Survey panel (e.g. Murray & WFXT Team, 2010;

Giacconi et al., 2009; Rosati et al., 2011; Borgani et al., 2011). The WFXT

mission is designed to be 2-orders-of-magnitude more sensitive than any

previous or planned X-ray mission for large area surveys and to match in

sensitivity the next generation of wide-area optical, IR and radio surveys.

Using an innovative wide-field X-ray optics design (Burrows et al.,

1992), WFXT provides a Field of View (FoV) of 1 deg2 (more than ten

times Chandra’s one), with an angular resolution of 5′′ (Half EnergyWidth,

HEW) nearly constant over the FoV, and a large collecting area (up to

1m2 at 1 keV, nearly ten times the collecting area of Chandra) over the

0.1− 7 keV band.

A HEW ≈ 5′′ allows AGN/cluster discernment at any redshift, and

enables confusion-free deep imaging. Moreover with such HEW it is

possible to resolve cool cores of z > 1 clusters (Santos et al., 2011), and to

detect sharp features like shocks, cold fronts, and cavities in the ICM.

Combined with the large collecting area, WFXT sensitivity enables

physical characterization of large samples of sources via their spectral

analysis and allows to trace the mass function of clusters and AGN over

a large range of masses and redshifts. Thus, WFXT would address many

outstanding cosmological and astrophysical objectives: formation and

evolution of clusters of galaxies and associated implications for cosmol-

ogy and fundamental physics (e.g. the nature of Dark Matter, Dark En-

ergy and gravity); black-hole formation and evolution; AGN interaction

with the ICM and the Intrastellar Medium (ISM) in clusters and galaxies;

and the high-energy stellar component and hot-phase ISM of galaxies,

including the Milky Way.

In five years of operation, according to Giacconi et al. (2009), WFXT

will carry out three extragalactic surveys: a Wide Survey, which will

cover all the extragalactic sky (20000 deg2) with a sensitivity ∼ 500 times

better than the ROSAT All Sky Survey (RASS, e.g. Voges et al., 1999); a

Medium Survey, which will reach over 3000 deg2 flux limits compara-

ble to those of the deep Chandra and XMM-Newton deep COSMOS fields

(Cappelluti et al., 2009); a Deep Survey that will reach over 100 deg2 a

5http://www.wfxt.eu/home/Overview.html, http://wfxt.pha.jhu.edu/
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sensitivity similar to those of the deepest Chandra pointings.

Based on the results presented by Giacconi et al. (2009), the left columns

of Table 3.1 contains the limiting fluxes (in the 0.5-2 keV energy band) at

which WFXT will detect a cluster as an extended source in the three sur-

veys. We will refer to the cluster samples built from these limiting fluxes

as Detection Sample.

At flux limits listed in the right column of Table 3.1 clusters are de-

tected with at least 1500 photons. These high quality data enable a direct

measurement of the mass proxies, and allow cluster redshifts to be mea-

sured from the Fe-K 6.7 keV line in the X-ray spectra (see Section 2.2) with

a precision of ∆z . 0.01 (Yu et al., 2011), without resorting to demanding

optical spectroscopic follow-up campaigns. Such higher flux limits define

what we call in the following the Bright Sample.

3.4.1 Surveys mass thresholds.

In principle, a unique flux limit is not sufficient to define a completeness

criterion in an X-ray survey. In fact, due to vignetting and PSF variation

with off-axis angle, the flux limit for the detection of a source at a given

signal-to-noise varies across the field of view. For this reason, rather

than a flux limit, one should calibrate a flux-dependent sky coverage.

Owing to the approximate uniformity of the WFXT PSF, we expect such

a sky coverage to be steep around the flux limits reported in Table 3.1,

so that we ignore its flux-dependence in the following analysis. In order

to convert the flux limits into mass limits, we use the relation between

X-ray luminosity and M500,c calibrated by Maughan (2007), where masses

are recovered from YX , using Chandra data for 115 clusters in the redshift

range 0.1 < z < 1.3. Among the fitting expressions reported in Table

1 of that paper, we choose the relation between LX and M500,c, obtained

without excising the core region within 0.15 R500,c:

LX = C E(z)

(

M500,c

4× 1014 M⊙

)B

, (3.14)

with C = 5.6, B = 1.96. The reason for this choice is that we did not

attempt to model the core contribution in computing the flux limits re-

ported in Table 3.1.

We show in Figure 3.2 the redshift dependence of the limiting mass

M500,c associated to the survey flux limits for both the Detection Sample
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and the Bright Sample. The prescriptions for the mass function that we

use in the analysis are provided for different definitions of the mass.

The values of the mass have been converted, following Hu & Kravtsov

(2003), by adopting the NFW halo density profile (Navarro et al., 1997)

for the reference cosmological model. In this analysis we assume that

the concentration parameter is equal to 5 (see also Shang et al., 2009).

Extrapolating the M-LX relation by Maughan (2007) at faint fluxes of our

surveys would imply unrealistically small mass limits at low redshift. For

this reason, we decided to use a lower limit of M500,c = 5× 1013M⊙ in

the definition of the selection function (shown with the horizontal dotted

line in Figure 3.2). In fact, this is comparable to the lowest mass down

to which mass proxies have been calibrated so far (e.g., Vikhlinin et al.,

2009a). We also point out that we do not include the cosmology depen-

dence of the selection function in our analysis.

We show in Figure 3.3 the cumulative redshift distributions for the

clusters belonging to the Detection Sample (left panel) and to the Bright

Sample (right panel). Overall, the three WFXT surveys would yield about

3 × 106 detected clusters, out of which ∼ 7.5× 104 clusters should be

found at z > 1. This will provide an improvement by about four orders

or magnitude with respect to the ∼ 10 z > 1 clusters currently confirmed.

At the same time, we expect to have about 2× 104 clusters with robustly

measured mass proxies, of which ∼ 4000 would lie at z > 0.5. This would

increase by more than two orders of magnitude the number of clusters

for which mass proxies have been measured above this redshift, after

intensive follow-up Chandra observations of clusters identified in ROSAT-

based surveys (e.g., Vikhlinin et al., 2009a; Mantz et al., 2009; Ettori et al.,

2009). We stress that, despite the small area covered, the Deep survey

provides the dominant contribution to the Bright Sample at z > 1. This

highlights the important role that the Deep survey has in providing mass

proxies at high redshift. Although predicting the number of extremely

distant clusters is highly uncertain, owing to the unknown evolution of

the mass luminosity relation above z ≃ 1, we foresee that ∼ 103 clusters

would be detected at z & 2, with mass measurements available for few

tens of them.

In Figure 3.4, we show the cumulative redshift distributions of clusters

to be observed in the Wide, the Medium and the Deep surveys of the

Bright Sample according to the EDE model. In the lower panel it is shown

the ratio between the cumulative redshift distributions obtained for the
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Figure 3.1: Effective flux limits and sky coverage for past and planned X-ray

surveys.

Table 3.1: Characteristics of the X-ray surveys (Giacconi et al., 2009). Col-

umn 2: sky coverage Ω (in sq.deg.); Column 3: flux limits for detection of

extended sources (Detection Sample) in the [0.5-2] keV energy band (units

of 10−14 erg s−1 cm−2); Column 4: flux limits defining the Bright Sample.

Ω Fdet Fbr
Wide 20000 0.5 15.0

Medium 3000 0.1 3.0

Deep 100 0.01 0.3

DE and the EDE reference models by combining the three surveys. In

order to reproduce the observed abundance of clusters at low redshift,

in EDE models structures start to form earlier and the halo population

follows a slower evolution than in the ΛCDM prescription.

3.4.2 Mass parameters

Besides the cosmological parameters, that describe the models that we

use in our analysis, we consider also the parameters which specify the

redshift dependence of the fraction mass bias BM and the intrinsic scat-

ter σlnM, introduced in Eq.3.8, (in our analysis we do not consider the
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Figure 3.2: The redshift dependence of the M500,c mass thresholds, correspond-

ing to the flux limits for cluster detection for the three surveys, as reported in

Table 3.1: the Wide, Medium and Deep surveys are shown with the green, the

blue and magenta curves, respectively. The solid curves correspond to the De-

tection Sample and the dotted curves to the Bright Sample. The horizontal dotted

line marks the mass limit of M500,c = 5× 1013 h−1M⊙ below which we discard

clusters in our analysis.
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Figure 3.3: The cumulative redshift distribution for the three surveys, as pre-

dicted by the reference DE model of Eq. 3.1. The left panel is for the Detection

Sample, while the right panel is for the Bright Sample. In both panels solid (red),

dotted (blue) and dot-dashed (cyan) curves represent the Wide, Medium and

Deep surveys, respectively, while the short-dashed (green) curve represents the

sum of the three.

case of a possible mass dependence of these parameters). We assume the

following parametrization for such redshift dependencies:

BM(z) = BM,0(1+ z)α

σlnM(z) = σlnM,0(1+ z)β . (3.15)

We end up having four parameters, BM,0, σlnM,0, α and β, which ac-

count for the uncertain knowledge in the relation between observables

and mass (we refer them hereafter as mass-parameters). A negative value

for BM corresponds to a mass underestimate and, therefore, to a smaller

number of clusters included in a survey, for a fixed selection function.

The presence of the mass bias accounts for the possibility of a violation

of hydrostatic equilibrium in the estimate of X-ray masses, on which the

observable-mass scaling relation is calibrated. A number of independent

analyses of a variety of cosmological hydrodynamic simulations of galaxy

clusters converge to indicate that hydrostatic mass estimators provide

underestimates of true mass within R500,c by about 10-15 per cent (e.g.,

Borgani & Kravtsov, 2009; Ameglio et al., 2009; Piffaretti & Valdarnini, 2008;

Nagai et al., 2007; Rasia et al., 2005). Such results are also in line with
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Figure 3.4: The cumulative cluster redshift distribution for the three surveys, as

predicted by the reference EDE model of Eq. 3.2. Dashed (green), dotted (blue)

and dot-dashed (cyan) curves are for the Wide, Medium and Deep WFXT Bright

Sample surveys, respectively, while the solid (red) curve represents the sum of the

three. In the bottom panel we show the ratio between the cumulative redshifts

distributions for the combined survey, as predicted by the reference EDE model

and the reference DE model shown in the right panel of Figure 3.3. The shaded

region represents the Poissonian error on this ratio.
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the observational results on the comparison between cluster masses esti-

mated with weak lensing and with X-ray data (e.g., Mahdavi et al., 2008).

In the following, we assume BM,0 = −0.15 as a reference value for the

mass bias and regarding its evolution, we take α = 0 as a reference value.

As for the intrinsic scatter, it has the effect of increasing the number of

clusters included in the survey. In fact, the number of low-mass clusters

that are up-scattered above the survey mass limit is always larger than the

number of rarer high-mass clusters which are down-scattered below the

same mass limit (e.g., Cunha, 2009, and references therein). As a refer-

ence value, we assume σlnM,0 = 0.25, consistent with the intrinsic scatter

in the M500,c-LX relation measured by Maughan (2007), with β = 0 for

its evolution. We stress here that, following Lima & Hu (2005), we use

the variance σ2
lnM and not the scatter as the parameter to be varied in

our Fisher matrix analysis. In fact, this quantity controls the excess of

up-scattered and down-scattered clusters with respect the total number.

In summary, we have four mass-parameters that add up to the eight

cosmological parameters for which we compute the Fisher Matrix. In

order to quantify the effect of the uncertain knowledge of the mass pa-

rameters, we will set in the following four different levels of prior. In

order of constraining strength, they can be described as follows.

1. No prior: all the four mass-parameters are left free to vary by assum-

ing no prior knowledge on their range of variation.

2. Weak prior: we assume ∆BM,0 = 0.05, ∆α = 1, ∆σ2
lnM,0 = 0.2 and

∆β = 1 for the 1σ uncertainty with which the four mass-parameters

are assumed to be known. The above value of ∆BM,0 reflects the

current uncertainty between different calibrations of violation of

hydrostatic equilibrium from simulations and from the compari-

son of weak-lensing and X-ray masses. For instance, Vikhlinin et al.

(2009a) compared weak lensing and Chandra X-ray mass measure-

ments for a rather small sample of low-z clusters and concluded

that the mass scale can already be calibrated with a statistical un-

certainty of about 10 per cent. A similar result has been obtained

by Zhang et al. (2010) from the comparison of XMM-Newton X-ray

masses and weak lensing masses for a set of 12 nearby clusters.

Owing to these results, we also consider the case of the mass bias

parameter to be known with a precision ∆BM,0 = 0.05. An im-

provement by only a factor of two with respect to the present in the

calibration of the cluster mass scale is probably over conservative,
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owing to the orders-of-magnitude increase in the number of clus-

ters with precise X-ray mass measurements to be provided by the

three surveys and precise lensing mass measurements from both

ground-based and space telescopes. As for the evolution, we as-

sume ∆α = 1 as a prior, which would correspond to an uncertainty

in the mass bias calibration at z = 1 comparable to that calibrated

at present for nearby clusters. Regarding the prior on the intrinsic

scatter, we assume ∆σlnM,0 = 0.1 and ∆β = 1. We expect these to be

rather conservative choices, in view of the large number of clusters

that should be made available by future X-ray and optical/near-IR

surveys at both low and high redshift.

3. Evolution strong prior: in order to emphasize the role played by the

uncertain redshift evolution of the mass parameters, we assume in

this case the uncertainty in BM,0 and σ2
lnM,0 to be the same as in

the weak prior case, while we assume their evolution to be known to

good precision, so that ∆α = 0 and ∆β = 0.

4. Strong prior: in this case we consider the uncertainties in the cali-

bration of the mass-observable relation are so small to be neglected.

While this assumption is expected to be unrealistic for the Detection

Sample, it may be rather plausible in case we restrict the analysis to

the Bright Sample.

3.5 Characteristics of the EUCLID surveys

EUCLIDmission, recently approved by the European Space Agency (ESA),

will be launched in 2019. It has been designed in order to map large-scale

structure over a cosmic time covering the last 10 billion years, more than

75 per cent the age of the Universe. The mission is optimised for two inde-

pendent primary cosmological probes: Weak gravitational Lensing (WL)

and Baryonic Acoustic Oscillations (BAOs). In addition, the EUCLID sur-

veys yield data of several important complementary cosmological probes

such as galaxy clusters, and the integrated Sachs Wolfe effect.

WL requires a high image quality on sub-arcsec scales for the galaxy

shape measurements, and photometry visible and infrared wavelengths

to measure the photometric distances of each lensed galaxy out to z ∼ 2.

BAOs analysis requires near-infrared spectroscopic capabilities to mea-

sure accurate redshifts of galaxies out to z ∼ 0.7. Both probes require a
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very high degree of system stability to minimise systematic effects, and

the ability to survey a major fraction of the extra-galactic sky.

EUCLID produces images and photometry of more than a billion

galaxies and several million spectra, out to redshift z ∼ 2. Gravitational

lensing together with near infrared photometry of lensing sources ex-

plores the relationship between light, baryons and dark matter between

galaxy and super cluster scales as function of look-back time and envi-

ronment.

For WL, EUCLID measures the shapes of 30 resolved galaxies per ar-

cminin one broad visible R+I+Z band (550-920 nm) down to AB mag 24.5

(10 σ). The photometric redshifts for these galaxies reaches a precision of

σz/(1+ z) < 0.05. They are derived from three additional EUCLID NIR

bands (Y, J, H in the range 0.92-2.0 micron) reaching AB mag 24 (5σ ) in

each, complemented by ground based photometry in visible bands de-

rived from public data or through engaged collaborations with projects

such as DES, KiDS, and Pan-STARRS.

The BAOs are determined from a spectroscopic survey with a redshift

accuracy σ/(1+ z) ≤ 0.001. The slitless spectrometer, with λ/∆λ ∼ 250,

predominantly detects Hα emission line galaxies. The limiting line flux is

3× 10−16 erg s−1 cm−2 (1 arcsec extended source, 3.5 sigma at 1.6 micron),

yielding over 50 million galaxy redshifts with a completeness higher than

45 per cent.

The Wide survey covers 15, 000 deg2 of the extragalactic sky and is

complemented by two 20 deg2 deep fields observed on a monthly basis.

The latter survey is needed for the calibration of the slitless spectroscopy

and will be the primary target for follow-up observations. As a self-

standing survey, Deep data contain thousands of objects at z > 6 and

several tens of z > 8 galaxy or quasar candidates.

Clusters will be detected with EUCLID by analysing the photometric

data, an approach that has been used by the SDSS at low redshifts (e.g.,

Koester et al., 2007a). EUCLID will be able to push towards much higher

redshifts over a large area, thanks to its unique capabilities in the infrared.

EUCLID is able to calibrate the important mass-observable relations

and their scatter through lensing measurements. The high image quality

and number density of sources will enable EUCLID to measure masses

of clusters much more accurately and out to higher redshifts than is pos-

sible from the ground. The combination of Euclid data with other sur-

veys, such as eROSITA, WFXT or Planck, enables the cross-calibration of

non-lensing mass-observable relations, which are currently limited to low



112 CHAPTER 3. FORECASTING COSMOLOGICAL CONSTRAINTS

redshifts and small samples.

In the EUCLID Near-Infrared Imaging Photometer (NIP) wide-survey,

we expect to be able to detect ∼ 30, 000 clusters of galaxies more massive

than log(M) ∼ 14.6 at z > 0.2, of which ∼ 4, 000 at z > 0.5, ∼ 600 at z > 1

and ∼ 200 at z > 1.4 (see Figure 3.6). These predictions are for detections

of 5-σ over-densities in the galaxy counts at the scale corresponding to

cluster virial radii, r200, and are obtained by evaluating the expected clus-

ter richnesses and the variance of the field galaxy counts within the clus-

ter areas, at the depth of the EUCLID-NIP survey for different redshifts.

In such estimates, cluster overdensities are expected to be enhanced by

selecting galaxies in bins of photometric redshifts, zp, adopting the EU-

CLID requirement for a zp accuracy better than 0.05 × (1 + zp) for all

galaxies out to z ≈ 2. Using mock catalogues of galaxy clusters based

on the COSMOS data set, the resulting sample of clusters is expected to

be almost 100 per cent complete, and with negligible contamination from

spurious detections for z < 1. At z > 1 contamination is estimated to

be significant (up to 50 per cent) but it can be reduced by looking for

concordant redshifts of galaxies in the candidate clusters, since for every

z > 1 cluster candidate a few redshifts will be available from the EUCLID

Near-Infrared Imaging Spectrometer (NIS) survey. The resulting photo-

metric section function is displayed in Figure 3.5 and it is expected to be

nearly independent of z.

3.6 Results

Before proceeding with the derivation of forecasts for constraints on cos-

mological parameters, we verify that our fiducial cosmological models,

with the reference choice for the mass-parameters, matches available ob-

servational data on X-ray cluster surveys. To this purpose, we show in

Figure 3.7 the comparison between the cluster flux number counts ob-

served in the [0.5-2] keV energy band from the ROSAT Deep Cluster Sur-

vey to an X-ray flux limit of 3× 10−14 erg s−1 cm−2 (RDCS-3, Rosati et al.

1998, 2002) and the prediction of our reference model. The good agree-

ment with the data is not surprising, owing to the fact that the reference

cosmological parameters agree with constraints based on the evolution of

the cluster mass function (e.g., Borgani et al., 2001; Vikhlinin et al., 2009b;

Mantz et al., 2010a).

Moreover we show in Figure 3.8 a comparison between the predicted
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Figure 3.5: Selection function for the photometric survey. Solid and dashed

lines are for 5σ and 3σ detection, respectively. Courtesy of A. Biviano.

Figure 3.6: Number of clusters above a given redshift expected to be detected

as 5σ and 3σ overdensities in the EUCLID photometric survey (solid and dashed

lines, respectively). Courtesy of A. Biviano



114 CHAPTER 3. FORECASTING COSMOLOGICAL CONSTRAINTS

102

103

104

1e-13 1e-12

N
(>

S)
/s

te
r

S[0.5-2] (erg s-1 cm-2)

RDCS
Reference Model

Figure 3.7: The comparison between observed cumulative cluster flux num-

ber counts (symbols with errorbars) and predictions from the reference ΛCDM

model (dotted curve). Observational results refer to counts in the [0.5-2] keV

band from the ROSAT Deep Cluster Survey (Rosati et al., 2002), with errorbars

corresponding to 1σ Poissonian uncertainties (Gehrels, 1986).

and the observed redshift distribution for the RDCS-3 according to both

the standard DE and EDE models. We stress that this is not meant to be

a fit to an observational measurement of the cluster abundance to z ∼ 1,

but rather a test that our reference model is consistent with current obser-

vations. The redshift distribution for the two reference DE models have

been obtained by convolving the predicted redshift distributions with the

flux-dependent RDCS sky coverage, which provides complete informa-

tion on the survey selection function (Rosati et al., 2002).

The good agreement between available observational data and pre-

dictions of our reference model indicates that the latter can be used to

provide a realistic extrapolation of the evolution of the cluster mass func-

tion over redshift and mass ranges which are not probed by currently

available data.
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Figure 3.8: Comparison between the observed redshift distribution of X-ray se-

lected galaxy clusters (histogram with symbols with errorbars) from the ROSAT

Deep Cluster Survey -3 (Rosati et al., 2002) and predictions from the reference

DE models based on Eq. 3.1 (red solid curve) and Eq. 3.2 (green dotted curve).

Errorbars on observational data points correspond to 1σ Poissonian uncertainties

(Gehrels, 1986).
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3.6.1 Cosmological constraints

Having defined the reference cosmological model and the characteristics

of the X-ray cluster surveys, we present forecasts on constraints of cos-

mological parameters. We show first our results on DE EoS and (Ωm,σ8)

parameters based on the assumption of Gaussian initial density field per-

turbations for the WFXT surveys of the Bright Sample. In the Section 3.6.2

we show constraints from non-Gaussian model.

We will present our results in terms of constraints on the (Ωm, σ8) and
the (w0,wa) plane at the 68 per cent confidence level, after marginalizing

over the other cosmological and mass-parameters, and in terms of Figure

of Merit (FoM). The concept of FoM for DE constraints was introduced in

the Dark Energy Task Force (DETF) report (e.g., Albrecht et al., 2009) in

order to quantify the knowledge on DE EoS parameters that future cos-

mological experiments can reach. In general, the FoM for the capability

of an experiment to constrain a pair of cosmological parameters (θα, θβ)
can be defined as

FoM =
(

det
[

Cov(θα , θβ)
])−1/2

, (3.16)

where Cov(θα , θβ) is the covariance matrix between the two interesting

parameters. With this definition, the FoM is proportional to the area

encompassed by the ellipse representing the 68 per cent confidence level

for model exclusion.

In the computation of the cluster number counts Fisher Matrix, Eq.

3.5, Nl,n is calculated within intervals of observed redshift, having width

∆z = 0.05 out to zmax = 2. As for the observed mass, we use bins of

width ∆ logM = 0.01, extending from the lowest mass limit determined

by the survey selection function at a given redshift, up to 1016h−1M⊙. We

have verified that with this tight binning in mass we saturate information

provided by cluster number counts to constrain cosmological and mass-

parameters.

In the computation of the power spectrum Fisher Matrix, given by

Eq. 3.10, the average cluster power spectrum defined by Eq. 3.11 is

calculated by integrating over redshift intervals having constant width

∆z = 0.2. This binning is coarser than that adopted for the analysis of

number counts. It represents a compromise between the need of extract-

ing the maximum amount of information from clustering evolution and

the request of limiting the covariance between z-intervals (e.g., Stril et al.,
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2010). Indeed, the contribution from different z-bins can be added in

Fisher Matrix defined by Eq. 3.10 only if they carry statistically indepen-

dent information. As for the wavenumber, we consider a minimum value

of k = 0.001 Mpc−1; the choice of this minimum value does not change

the final results, because extremely large wave modes are not sampled by

the surveys used and, therefore, do not provide any contribution to the

Fisher Matrix. The maximum value chosen is kmax = 0.3 Mpc−1. This

choice derives from the need to maximize the information extracted from

the surveys, while avoiding at the same time the contribution from small-

scale modes where the validity of the linear bias model is compromised

by the onset non-linearity (e.g. Percival & White, 2009). Wavenumber bins

have been chosen to have log-uniform width ∆ log k = 0.1. Lastly, intro-

ducing redshift space distortions information, the power spectrum ac-

quires a dependence on µ, which is defined as the cosine of the angle that

k makes with the line of sight (Eq. 1.49). This implies that the Fisher

Matrix also involves a sum on µ that runs from µ = −1 to µ = 1. After

analysing how to maximize the information from the RSDs, we choose

to divide the interval of µ into 9 bins, while no significant information is

added by using a finer binning.

The results of our analysis on cosmological parameters in the standard

DE model from the WFXT surveys of the Bright Sample are presented in

Figure 3.9 where we plot the 68 per cent confidence levels on the (Ωm, σ8)
and (w0,wa) plane, in the left and right panels, respectively. In each panel,

we show the contours obtained for each of the three surveys and for their

combination. Contours are all obtained by combining information from

number counts and power spectrum, also including the prior information

from Planck. A strong prior is also assumed for the knowledge of the

mass-parameters (see Sect. 3.2).

The results in Figure 3.9 show the trade-off between surveys area and

depth in constraining different cosmological parameters. As for the re-

sults on (Ωm, σ8), there is no continuous trend in the constraining power

of the three surveys as we reduce the covered area and increase sensitivity.

The Medium Survey is in fact the one with most constraining power, espe-

cially for σ8, while the Deep and the Wide Surveys are somewhat less con-

straining. Furthermore, the three surveys provide comparable constraints

on Ωm. This is consistent with the expectation that constraints on this pa-

rameter are mainly provided by information on the CMB anisotropies,

carried by the Planck prior. As for σ8, we remind that this parameter de-
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Table 3.2: Figure of Merit and r.m.s. uncertainty in the DE EoS parameters, for

the three WFXT surveys of the Bright Sample, and for their combination. The

analysis is carried out by including the Planck prior and assuming strong prior

for the mass-parameters.

Surveys Deep Medium Wide Total

FoM 20 60 17 106

σw0 0.20 0.097 0.14 0.064

σwa 0.94 0.54 0.70 0.41

termines the timing of structure formation. Therefore, constraints on its

value are sensitive to both the statistics of massive clusters included in a

survey, and on the effective redshift range covered by the survey itself. In

this respect, the Medium Survey provides the best compromise between

number of massive clusters detected within its area and depth.

As for the constraints on (w0,wa), we note that their dependence on

the survey area/depth is different from the case of the (Ωm, σ8) param-

eters. While the Medium survey is still the most constraining one, we

note that the Deep Survey predicts a tighter degeneracy between w0 and

wa than the Wide survey. This translates into tighter constraints on the

redshift evolution of the DE EoS, if a prior knowledge on w0 is avail-

able, consistent with the fact that the Deep Survey covers a larger redshift

interval. This example illustrates that the choice of the survey strategy

depends in principle on the cosmological parameters that one is mostly

interested in. In Table 3.2 we report the values of the FoM and the r.m.s.

uncertainty in the DE EoS parameters for each survey and for their com-

bination, after marginalizing over the other parameters. The values of the

FoM in this table confirm that Medium Survey alone carries most of the

contribution to the FoM obtained by combining the three surveys.

Effect of mass-parameter priors

As a first test, we present the effect that using progressively stronger

priors on the mass-parameters has on the cosmological constraints. The

results of this analysis are shown in Figure 3.10, where we plot the con-

straints on cosmological parameters obtained by combining information

from cluster number counts and power spectrum, from the three surveys

together. The Fisher Matrix from the cluster experiment is also combined
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Figure 3.9: Constraints at the 68 per cent confidence level on the (Ωm, σ8) pa-

rameters (left panel) and on the (w0,wa) DE parameters (right panel). In each

panel, forecasts for the Deep, Medium and Wide cluster WFXT surveys of the

Bright Sample are shown with the cyan, blue and green ellipses, respectively, by

combining number counts and power spectrum information. Also shown with

the red ellipse are the constraints obtained from the combination of the three sur-

veys. All constraints are obtained by assuming a strong prior on the knowledge

of the mass-parameters and combining the Fisher Matrices for cluster number

counts, cluster power spectrum and CMB Planck experiment.
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Figure 3.10: Constraints at the 68% confidence level on the (Ωm, σ8) plane (left

panel) and on the (w0 ,wa) parameters (right panel). Different ellipses correspond

to different assumptions on the prior for the mass-parameters (see text): no prior

case (red), weak prior case (cyan), evolution strong prior case (blue), and strong prior

(green). All constraints are obtained by combining cluster number counts and

power spectrum information for the combination of the three surveys. The Fisher

Matrix from Planck CMB experiment.
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with the Planck Fisher Matrix.

In the left panel of Figure 3.10 we show the constraints in the (Ωm, σ8)
plane. Assuming a progressively better knowledge of the relation be-

tween X-ray observable and cluster mass turns into progressively tighter

constraints on the σ8 parameter, while leaving the results on Ωm basically

unchanged. The reason for this behaviour is that constraints on Ωm are

mainly determined by the measurement of the CMB anisotropies and by

the shape of power spectrum, which however only provide rather loose

constraints on σ8. On the other hand, the power spectrum normalization

is determined by the growth of cosmic structures, which is traced by the

evolution of the halo mass function. Since a precise measurement of the

mass function can only be obtained through a detailed knowledge of the

mass-parameters, it is of little surprise the such parameters determines

the accuracy with which σ8 can be measured.

As for the constraints on the DE EoS parameters, (see right panel of

Figure 3.10), we note that improving the knowledge of the mass param-

eters from the no prior (red ellipse) to the weak prior (cyan ellipse) case

only brings a modest enhancement of the constraining power of the sur-

veys. The main reason for this is that constraints on DE parameters are

here mainly contributed by the evolution of linear perturbation growth.

On the other hand, constraints on the growth are rather degenerate with

the uncertainty in the redshift evolution of the mass-parameters, which

is assumed to be rather generous also in the weak prior case. Indeed, a

more significant improvement in the constraints on the DE parameters is

obtained for the evolution strong prior case (blue ellipse), which assumes

a precise knowledge of the parameters determining the evolution of the

mass-observable relation. The slight improvement in the constraints ob-

tained for the strong prior case (green ellipse) confirms the importance of

accurately calibrating the evolution of the scatter and bias parameters by

measuring different mass proxies in high redshift clusters selected in the

Deep survey. This result, which is confirmed by the FoM values reported

in Table 3.3, also highlights the importance of the Deep Survey. Indeed

covering at a high sensitivity an even small sky area allows one to obtain

a robust calibration of the scaling relations between the cluster mass and

X-ray mass proxies over a large redshift baseline. As shown in the right

panel of Figure 3.3, this survey will provide about 400 clusters at z > 1

for which measurements of redshift, Mgas and YX will be possible, out of

which about 100 are expected to lie at z > 1.5.
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Table 3.3: Prior on mass parameters assumed in the four cases under study (see

text) and relative Figure of Merit (FoM) [see Eq. 3.16] from the combination of

threeWFXT surveys of the Bright Sample. The analysis is carried out by including

the Planck prior.

Reference

values: BM,0 = −0.15 α = 0 σ2
lnM,0 = (0.25)2 β = 0

Cases: Strong Evolution Weak No Prior

∆BM,0 0 0.05 0.05 /

∆α 0 0 1 /

∆σ2
lnM,0 0 0.2 0.2 /

∆β 0 0 1 /

FoM 106 91 64 61

Combining cluster number counts and power spectrum

We discuss now how the combination of number counts and power spec-

trum information enhances cosmological constraints. To this aim, we

show the improvement on constraints obtained by adding progressively

information from the cluster number counts, the mean cluster power

spectrum analysis and the CMB prior from Planck. The results are pre-

sented in Figure 3.11 in the (Ωm, σ8) (left panel) and (w0,wa) planes.

Constraints are obtained by combining information from the three WFXT

surveys of the Bright Sample together and assuming strong prior on mass-

parameters. The redshift evolution of the cluster number counts set the

direction of degeneracy for the constraints on Ωm and σ8. Such con-

straints are mainly placed on the linear growth factor of density pertur-

bations through the mass function. Furthermore, since the density pa-

rameters contributed by matter and DE also affect the expansion history

of the universe, we expect their values to be constrained by the cluster

number counts, through the redshift evolution of the comoving volume

element. As for the power spectrum analysis, it provides information on

the growth rate of cosmic structure through the bias factor, and the RSDs

effect. Moreover BAO features, that depend on the expansion history of

the universe (see sec. 3.6.1), and the power spectrum shape (see sec. 3.6.1)

are also sensitive to the underlying DM distribution.

In Figure 3.11 we show that adding the power spectrum information to

the number counts substantially shrinks the contours. Including the infor-
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mation from the Planck prior (red contour) further contribute to tighten

the contours in the (Ωm, σ8) plane. In order to verify whether CMB add

information only by constraining the curvature of the Universe, we also

show with the green contour the effect of assuming instead a flat Uni-

verse on the cluster constraints. In this case, results on (Ωm, σ8) are not

drastically improved with respect to the case in which curvature is a free

parameter, while they are significantly worse than with the Planck prior.

The reason for this result is that CMB anisotropies provide constraints not

only on the curvature, but also on the Hubble parameter h, on Ωb and on

the primordial spectral index ns. All these parameters enter in defining

the shape of the power spectrum, along with Ωm. Therefore, precisely

determining them from the CMB turns into a significant improvement

of the constraints on the density parameter from the shape of the power

spectrum.

As for the constraints on (w0,wa), their direction of degeneracy changes

as a specific geometry is assumed. Imposing the flat prior corresponds to

fix the redshift at which DE component, Ωde, starts dominating over Ωm

and, therefore, breaks the degeneracy between w0 and wa. By including

the Planck prior, instead of assuming flatness, has a smaller impact than

for the (Ωm, σ8) constraints. Therefore, even though CMB alone does not

provide in itself stringent constraints on the DE EoS(Komatsu et al., 2011),

it is quite effective in improving the corresponding constraints from clus-

ter number counts and power spectrum, through the constraints placed

on the geometry of the Universe. The Deep and Medium surveys dom-

inate the cluster counts at z & 0.4 (see right panel of Figure 3.3), thus

improving the constraints on the growth rate of perturbations in a red-

shift range where it is sensitive to the DE EoS.

Information from Baryonic Acoustic Oscillations

We quantify the geometrical information brought by the presence of BAOs

features in the matter power spectrum. BAOs appear as wiggles super-

posed on the power spectrum of the dominant dark matter component

(e.g. Eisenstein & Hu, 1998). As we showed in Section 1.4, the posi-

tion and the amplitude of the wiggles are related to the amount of dark

matter and baryons. In this analysis, we study the constraints on the

(w0,wa) DE EoS parameters as obtained by using the transfer function by

Eisenstein & Hu (1998), which includes BAOs, and by using instead the

transfer function that smoothly interpolates through the oscillations (see
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Figure 3.11: Constraints at the 68 per cent confidence level on the (Ωm, σ8) pa-

rameters (left panel) and on the (w0,wa) DE EoS parameters (right panel). Con-

tours, from the wider to the narrower ones, are obtained by including the Fisher

Matrix from cluster number counts only (cyan ellipse), adding cluster power

spectrum information (blue ellipse), further assuming a flat Universe (green el-

lipse) and adding priors from the Planck experiment while leaving geometry

free (red ellipse). All constraints are obtained by combining information from

the three surveys and assuming the strong prior on the mass parameters.
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Eq. 30 of Eisenstein & Hu 1998). In the latter case the presence of baryons

manifests itself only by modifying the overall shape of the transfer func-

tion.

We carried out the analysis including and excluding BAOs in the

shape of the matter power spectrum used to compute cluster number

counts and bias. In order to better appreciate the information carried by

BAOs, in both cases we do not assume any prior on cosmological param-

eters, while we use strong prior on the mass-parameters. As expected,

constraints from Wide survey are those that benefit most from the pres-

ence of the BAOs. This is mainly due to the fact that this survey provides

the best sampling of the long wavelength modes corresponding to the

most prominent first oscillation harmonics. The inclusion of the BAOs

analysis increases the FoM by a factor of 2.1 in this case. On the other

hand, no significant information on BAOs is provided by the Medium

and the Deep surveys. As for the Medium survey, FoM does not increase,

while the FoM provided by Deep survey increases by a factor of 1.2. In

fact, the Deep survey seems to convey slightly more information on the

BAOs. This is mainly due to higher number density of clusters in this

survey, that allows to decrease the noise in the sampling of the BAOs.

Information from the power spectrum shape

To quantify the geometrical information encoded in the matter power

spectrum shape, we fit the shape parameter Γ in our analysis, regard-

less of its dependence on Ωm, h and Ωb which is specific to the type of

Dark Matter. We compare the results obtained by assuming Dark Mat-

ter to be Cold with those obtained for a general form of Dark Matter.

In the latter case Γ is treated as a free parameter. In the former case,

under the CDM assumption, the shape of the transfer function is deter-

mined by Ωmh, that specify the size of horizon at the matter-radiation

equality epoch, and by the baryon density parameter. For this reason,

the power spectrum shape carries information on the cosmic expansion

history. Relaxing the CDM assumption, other characteristic scales could

enter in determining the shape of the power spectrum. For instance, if

massive neutrinos provide a contribution to the DM budget, the power

spectrum is expected to be suppressed with respect to the pure CDM

scale on scales smaller than the characteristic neutrino free streaming

scale (e.g., Hannestad, 2010; Marulli et al., 2011), and already available

data on the evolution of the cluster mass function have been used to set
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interesting constraints on neutrino mass (Mantz et al., 2010b).

In Figure 3.12 we show the expected 68 per cent confidence ellipse

on the (Ωm, σ8) plane, by combining cluster number counts and power

spectrum information for the three surveys together, when leaving the

shape Γ as a free parameter (blue dotted ellipse) and when using instead

its CDM expression (red solid ellipse). In order to make more clear the

effect of assuming a CDM power spectrum on these constraints, we fix to

their reference values the parameters that, along with Ωm, determine the

power spectrum shape, namely Ωb, the Hubble parameter h and the pri-

mordial spectral index ns. Relaxing the assumption of a CDM spectrum

relaxes the constraints; since the effect is more pronounced for the matter

density parameter, the direction of degeneracy also changes in the sense

of a milder dependence of σ8 on Ωm.

As for the constraints on the DE parameters, since the largest survey

area provides the best sampling of the power spectrum shape, we find

that if we relax the assumption of CDM, the FoM of the Wide survey de-

creases by 7 per cent. This decrement is less pronounced in the Medium

and Deep surveys, whose FoM decreases respectively by 4 and 5 per cent,

owing to their weaker sensitivity to to the spectrum shape.

Information from redshift-space distortions

In this section we discuss the effect of including information from RSDs

in the power spectrum analysis. We remind here that we restrict our

analysis to the linear regime, while we do not attempt to include the

non-linear distortions taking place on small scales. In this case the de-

pendence of the power spectrum on the angle between line of sight and

wavenumber directions is expressed by Eq. 1.49. Including information

on the RSDs provides additional information on the linear growth rate of

perturbations.

In Figure 3.13 we show the constraints on the (w0,wa) DE EoS pa-

rameters obtained by either including (blue dotted ellipse) or excluding

(dot-dashed cyan ellipse) RSDs information in the analysis of the cluster

power spectrum. Both contours represent constraints derived by com-

bining the power spectrum Fisher Matrix from the combination of the

three surveys, also including Planck prior on cosmological parameters

and strong prior on mass-parameters. Including information from RSDs

turns into a significant tightening of the DE constraints, thanks to the

additional constraints provided on the linear perturbation growth rate.
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Figure 3.12: Constraints at the 68 per cent confidence level on the (Ωm, σ8)

parameters by leaving the shape parameter Γ as a free fitting parameter (dotted

blue ellipse) or assuming its CDM dependence on Ωm, h and Ωb, (solid red

ellipse). All constraints are obtained by combining information from the three

surveys together, including number counts and power spectrum information. In

both cases, we assume here the values of the parameters h, Ωband ns to be fixed

at their reference values (see text). No Planck prior are assumed in this case,

while strong priors are assumed on the mass-parameters.
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Such an extra constraint turns into an increase of the FoM by a factor of

2.2. By analysing the three surveys separately, if we do not add Planck

prior, we find that including RSDs information enhance the value of the

FoM by a factor of about 35, 7.75 and 6.8 for the Wide, Medium and Deep

surveys, respectively. The increasing contribution of RSDs with survey

depth is due to the fact that tighter constraints are obtained by extending

the redshift baseline over which the evolution of perturbation growth is

followed.

We emphasize once again that large surveys of galaxy clusters do have

the potential of conveying cosmological information from RSDs. This

in turn highlights the importance for such surveys of providing precise

measurements of redshifts for all clusters included.

Constraints on Early DE models

As a final analysis, we derive forecasts for the constraints on the param-

eters defining the EoS of Early Dark Energy (EDE) model of Eq. 3.2 ,

which assumes the parametrization by Grossi et al. (2009) from WFXT

Bright Sample. In Figure 3.14, we show constraints obtained on the (ΩDE,

w0) parameters. Cluster number counts and bias are computed by using

the standard mass function by Jenkins et al. (2001). In fact, as discussed

by Grossi et al. (2009), the expression of the mass function calibrated on

N-body simulation according to ΛCDMmodel is a reliable description

also of the one provided by simulations of EDE models, at least as long

as DE is homogeneous on small scales (see also Francis et al., 2009).

Left panel of Figure 3.14 presents the constraints obtained for each of

the three surveys and for their combination. They are obtained by com-

bining cluster number counts and power spectrum information. We in-

clude constraints from the Planck prior and assume strong prior on mass-

parameters. The results shown in this figure confirm that the Medium

survey is the one carrying most of the information on the DE EoS, thus

extending to EDE models what shown in the right panel of Figure 3.9.

In order to analyse the origin of the constraints on EDE parameters, we

show in the right panel of Figure 3.14 how such constraints progressively

tighten as we add information from cluster power spectrum and Planck

experiment to the cluster number counts.They are expected to provide

rather degenerate constraints on (w0,Ωe,de), which is basically associated

to the freedom of choosing a generic geometry of the Universe. Includ-

ing the power spectrum analysis brings both information on geometry
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Figure 3.13: Constraints at the 68 per cent confidence level on the (w0,wa) DE

EoS parameters, after including (dotted blue curve) or excluding (dot-dashed

cyan curve) information from redshift-space distortions in the cluster power

spectrum analysis. Constraints shown here are obtained by combining infor-

mation for the three surveys together, including the prior information from the

CMB Planck experiment, and assuming strong prior on the mass-parameters.
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Figure 3.14: Constraints at the 68 per cent confidence level on EDE EoS pa-

rameters assuming strong prior on mass parameters from the Deep, Medium

and Wide WFXT surveys for the Bright Sample (dot-dash cyan, dotted blue and

dashed green curves, respectively). Left panel: Constraints obtained by combin-

ing number counts and power spectrum information. Also shown with the solid

red curve are the constraints obtained from the combination of the three surveys.

The FM from Planck experiment included in the calculation of all constraints.

Right panel Constraints obtained by including the FM from number counts of

cluster (dot-dashed cyan curve), adding power spectrum (dotted blue curve)

and adding prior from Planck experiment (solid red curve). Such constraints are

obtained by combining information for the three surveys together.

through the shape of the transfer function and additional information on

perturbation growth through RSDs. Furthermore, adding also constraints

expected from the Planck experiment causes constraints to be much im-

proved, while changing the degeneracy direction. The reason for this is

that in the EDE scenario, the purely geometrical constraints from CMB

anisotropies become critical due to a non-negligible DE contribution to

the total energy density of the Universe at z ∼ 103. In general, this fur-

ther highlights that tracing cosmic growth over the widest possible range

of redshift is required in order to tightly constrain the values of DE EoS

parameters.
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Comparison of constraints from WFXT and other cosmological experi-

ments

In order to compare the constraints from the WFXT cluster surveys to

those expected from other cosmological experiments, we also compare in

Figure 3.15 the FoM expected fromWFXT to those presented by Albrecht et al.

(2006) for different large-scale structure probes. In the DETF report,

they showed that Stage II cluster projects (ongoing surveys) provide FoM

∼ 2 (Figure 3.15) when combined with Planck priors. This analysis was

carried out for a generic cluster count survey covering 200 deg2 up to

zmax = 2, with the simple assumption of a constant mass selection func-

tion. According to Stage IV future experiments, by extending the survey

area to 20000 deg2, the FoM rises in the optimistic configuration 6 up

to ∼ 40 with the contribution of the CMB Planck priors. We point out

that the DETF analysis did not include the constraints expected from the

power spectrum analysis. A similar value of the FoM was also obtained

from an optimistic version of Stage IV project for BAO analysis based on

galaxy redshift surveys, again including Planck priors. The constraining

power of these optimistic 7 Stage IV experiments is somewhat weaker

than that of the WFXT surveys, with the latter having a FoM larger by

a factor of & 2. In Figure 3.15, we also show for reference the FoM

expected for an optimistic 8 Stage IV Weak Lensing experiment, which

should reach a value of about 300.

We stress that the above forecasts from the WFXT surveys are ob-

tained by considering a subsample of clusters with at least 1500 net pho-

ton counts. With this restriction robust mass and redshift measurements

can be readily available from the same survey data, without resorting

to external follow-up calibrations or observations. As such, the derived

6 As for the clusters analysis, according to the optimistic configuration, the mean of

the mass-observable relation and its variance per redshift interval of ∆z = 0.1 is assumed
in the DETF report to be determined up to a level of 1.6 per cent.

7 As for the BAOs analysis, the DETF report introduces the σF parameter, which
describes the scatter in the relation between the true and the photometric redshifts,

σ2
F = Var(z− zphot)/(1+ z)2. In the the optimistic configuration σF = 0.01.

8 As for the WL analysis in the DETF report, the r.m.s. bias σln(1+z) between the mean

z and photometric redshift for galaxies in ln(1+ z) for each bin of width 0.15 is assumed

to be determined with a precision of 0.001. Moreover, the shear measurement is assumed
to be miscalibrated by a factor (1+ fcal) that varies independently for each redshift bin.

It is assumed that the calibration factor of each redshift bin has a Gaussian prior of
width σ( fcal). In the optimistic scenario this parameter was fixed to σ( fcal) = 0.001.
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constraints should be considered as rather conservative since they do not

include possible information carried by clusters detected with a smaller

number of photons or any other information to constrain mass from ex-

ternal observations (e.g., Sunyaev-Zeldvich fluxes, weak lensing masses

and optical richness from future surveys). Lowering the flux limits of the

WFXT surveys by a factor of 30 would still guarantee detection of clus-

ters as extended sources, without however allowing a measurement of

redshifts and robust mass proxies. Figure 3.15 shows that by including

all the detectable clusters, the FoM increases by about one order of mag-

nitude, even by assuming no prior on the mass parameters to compensate

for the lack of robust mass measurements. We note that the Wide survey

provides the largest constraining power for the DE parameters when we

include all clusters down to the detection limit. In fact, in this case the

Wide survey dominates the statistics of clusters counts out to redshift 1.5

(see Figure 3.3). Clearly, the results obtained from all the detected clus-

ters must be considered as optimistic, since they rely on the possibility of

confirming all these extended sources and measuring their redshifts with

the aid of large follow-up observations.

Constraints from EUCLID mission

We performed our analysis for the optical near-infrared EUCLID mis-

sion in order to obtain forecast on the DE Standard EoS parameters (Eq.

3.1). The photometrical EUCLID survey will cover an area of 20000

sq. deg. and will detect clusters down to the limiting mass M200,c =
2× 1014M⊙, constant over the entire redshift range (0.2 < z < 2) (Figure

3.5). This mass limit is calculated at 3σ level of detection (i.e. the num-

ber of EUCLID-detected galaxies within r200,c is 3 times the r.m.s. of the

field counts in the cluster area). EUCLID will detect ∼ 1.6× 105 clusters,

3.8× 104 of them at z ≥ 1. It will estimated the redshifts and calibrate

the observable-mass relation using the WL EUCLID analysis and large

follow up campaign.

In Figure 3.16 we show constraints on the DE EoS parameters from

EUCLID. The combination of the FM analysis of the cluster number den-

sity and power spectrum from the EUCLID sample alone can constraints

w0 and wa at the level of σw0 = 0.09 and σwa = 0.88 and by assuming

strong prior on the mass parameters the constraining power i.e. the FoM

increase from 16 to 37. As in the analysis performed for WFXT we found

that clusters analysis alone cannot determinate the direction of degener-
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Figure 3.15: The histograms represent the Figures-of-Merit for the (w0,wa) pa-

rameters, as derived in the following configurations: by including the Fisher

Matrix for the cluster number counts only (NC), for the cluster mean power

spectrum only (PS), for the sum of the two (NC+PS), and by adding the prior

from the Planck experiment (NC+PS+PL). All these FoM are obtained by as-

suming strong prior on mass-parameters for the Bright Sample. The last group of

histograms shows FoM as obtained in the configuration NC+PS+PL by consider-

ing clusters in theDetection Sample and by assuming no prior on mass-parameters.

The FoM for the Deep the Medium and the Wide cluster survey are shown with

the cyan, blue, green histograms. The yellow histogram represent the FoM ob-

tained from the combination of the three surveys. The horizontal lines show the

FoM as reported in the DETF (Albrecht et al., 2006) for Stage II Cluster projects

(CL-II; dot-dashed), for optimistic Stage IV BAO and Cluster projects (BAO IVS-o

and CL IVS-o, respectively; solid line) and for optimistic Stage IV Weak Lens-

ing project (WL IV-o; dotted line), by combining each probe with CMB Planck

priors.
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acy of the constraints in the (w0,wa) plane. By adding priors from Planck

experiments, the geometry of the universe is in fact fixed and we obtain

FoM=785 (176 if we consider no prior on mass parameters) and constraints

on w0 and wa of σw0 = 0.02 and σwa = 0.13. Constraints from WFXT, also

represented in Figure 3.16, are weaker then those provided by EUCLID

because at high redshifts the X-ray mass limit is much higher than the

optical one because of the dimming of the surface brightness as (1+ z)4.
More over we stress that we constraints shown for WFXT are obtained

from the Bright Sample, within all the clusters are detected with at least

1500 photons, so the mass and the redshift of each cluster can be calculate

directly in survey mode without any further follow-up observation.

In figure 3.17 we show constraints on the DE parameters w0 and ΩDE

in the standard ΛCDM scenario for current data sets and future WFXT

and EUCLID missions. Constraints from current clusters data have been

provided by using the 400d sample based on ROSAT X-ray survey ob-

servation Vikhlinin et al. (2009b) that contains less then 90 clusters. With

future experiments this number will increase of many order of magni-

tudes, and the constraing power of clusters will consequently increase.

3.6.2 Constraints on non-Gaussianity

We present results on non-Gaussian models from WFXT Detection Sample.

These results are shown in terms of constraints on the (σ8, fNL) plane

after marginalizing over the other cosmological and mass parameters.

Unless differently specified, all constraints are provided by adding Planck

priors and assuming no prior on mass parameters. The reason for this

choice is that, for a fixed Friedmann background, σ8 and fNL are the

two parameters which determine the timing of structure formation and,

therefore, the evolution of number density and large-scale clustering of

galaxy clusters. In the following, we will always show constraints on the

(σ8, fNL) plane at the 68 per cent confidence level.

In analogy with the Figure-of-Merit introduced to quantify the con-

straining power of an experiment for the Dark Energy EoS (e.g., Albrecht et al.,

2006, 2009; Wang, 2008), we introduce a Figure-of-Merit for the timing of

structure formation in non-Gaussian models:

FoMSFT = (det [Cov(σ8, fNL)])
−1/2 , (3.17)

where Cov(σ8, fNL) is the covariance matrix between σ8 and fNL, which
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Figure 3.16: Constraints at the 68 per cent confidence level on the (w0,wa) DE

EoS parameters. Contours are obtained by including the Fisher Matrix from clus-

ter number counts only (NC; cyan ellipse), adding cluster power spectrum in-

formation (NC+PS; blue ellipse), and adding priors from the Planck experiment

(NC+PS+PLANCK; red ellipse). All these constraints are obtained by combin-

ing information from the EUCLID survey and assuming the strong prior on the

mass parameters. For comparison we also show the NC+PS+PLANCK results

(magenta-dashed curve) assuming no prior on mass parameters. The solid-red

curve represent constraints obtained from the combination of the three WFXT

survey of the Bright Sample including the Fisher Matrix from NC+PS+PLANCK

and assuming strong prior on the mass parameters.
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Figure 3.17: Constraints on (w0,ΩDE) parameters from current data sets: Bary-

onic Acoustic Oscillations (yellow region), type-Ia SNe (green region), WMAP

(blue region) and current constraints from cluster samples 400d (Vikhlinin et al.,

2009b). The ellipses represent constraints from future experiments, based on

both the evolution of the cluster abundance and the power spectrum informa-

tion and assuming strong prior on the mass parameters. Cyan ellipse show con-

straints from the combination of the three WFXT surveys of the Bright Sample,

and grey ellipse constraints from EUCLID sample. All constraints corresponds

to χ2 = 1 (i.e. 68 per cent confidence level for one significant parameter) and

are obtained under the assumptions of flat Universe, constant DE EoS, prior on

Hubble parameter (h = 0.08). Ωb parameter is fixed to its reference value.
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Figure 3.18: Constraints at the 68 per cent confidence level on non-Gaussian pa-

rameter fNL and power spectrum normalization σ8 coming from number counts

alone (short-dashed green curve), power spectrum alone (dotted blue curve) and

from the combination of the two (solid red curve). The analysis refer to the in the

Wide Survey of the WFXT Detection Sample. No prior is assumed for the values

of the mass parameters. The Fisher Matrix from Planck experiment is included

in the calculation of all constraints.

is obtained by inverting the FM and marginalizing over all the other pa-

rameters.

We show in Figure 3.18 the constraints on the fNL and σ8 parame-

ters computed from the number counts and from the power spectrum

within the Wide survey, by assuming no prior on the values of the mass

parameters. This plot clearly demonstrates the strong complementarity

that number counts and large-scale clustering have to constrain σ8 and

fNL: while number counts are highly sensitive to the value of σ8, the

weak sensitivity of the high-end of the mass function to non-Gaussianity

(e.g., Fedeli et al., 2009, and references therein) provides only very weak

constraints on fNL; conversely, the scale-dependence of bias makes the

power spectrum a powerful diagnostic for non-Gaussianity, while pro-

viding only loose constraints on σ8.
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Table 3.4: Figure-of-merit of structure formation timing, FoMSFT [see Eq.

3.17], and r.m.s. uncertainty in the non-Gaussian parameter, σfNL
, for the

three surveys, and for their combination, assuming different priors for the

mass parameters. Columns 3-6 show the results for the Wide, Medium

and Deep Surveys, and for the combination of the three.

Sample - mass prior Wide Medium Deep Total

Detection - no pr. FoMSFT 33.1 8.5 0.4 39.2

σfNL
11.3 18.5 84.2 10.4

Detection - weak pr. FoMSFT 33.3 8.8 0.6 39.4

σfNL
11.3 18.4 84.3 10.4

Detection - strong pr. FoMSFT 157.2 49.3 3.0 183.2

σfNL
11.2 18.0 80.9 10.3

Bright - strong pr. FoMSFT 7.3 14.3 3.0 22.3

σfNL
55.9 45.9 85.7 33.8

If we combine all the information obtainable from the three WFXT

surveys of the Detection Sample, we obtain the constraints shown in Fig-

ure 3.19. Most of the constraining power is provided by the Wide survey,

with only little information on structure formation timing carried by the

Medium and Deep ones. There are two main reasons for this. First,

the Wide survey provides the largest statistical baseline out to z ≃ 1.5,

when including all clusters down to the mass limit corresponding to de-

tection (see left panel of Figure 3.3). This implies a better determined

mass function and, therefore, stronger constraints on σ8. Second, the

larger area coverage of the Wide survey allows it to better sample long-

wavelength modes, where the scale-dependence of the bias induced by

non-Gaussianity can be better assessed, thus turning into stronger con-

straints on fNL. As shown in Table 3.4 the value of FoMSFT for the combi-

nation of the three surveys is in fact dominated by the Wide Survey.

The contribution of information to the Fisher Matrix carried by the

power spectrum at different redshifts and wavenumbers can be under-

stood by looking at the dependence of the effective volume, Ve f f , on the

power spectrum, which is set by the bias parameter, and on the level of

Poisson noise, which is set by the number density of clusters. Following

Eq.(3.13), we define the quantity

Wv(k, z) =

[

Ñ(z)P̄cl(k, z)

1+ Ñ(z)P̄cl(k, z)

]2

, (3.18)
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Figure 3.19: Constraints at the 68 per cent confidence level on ( fNL,σ8) parame-

ters from the Deep, Medium and Wide surveys of Detection Sample (dot-dashed

cyan, dotted blue and solid red curves, respectively), by combining number

counts and power spectrum information, by using no priors on the mass pa-

rameters. Also shown with the short-dashed green curve are the constraints

obtained from the combination of the three surveys. No prior is assumed for

the values of the mass parameters. The Fisher Matrix from Planck experiment is

included in the calculation of all constraints.
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which gives the weight carried by the wavenumber k to the computation

of the clustering Fisher Matrix at redshift z. In the left panel of Figure

3.20 we show the redshift dependence of the effective volume computed

within redshift intervals of constant width ∆z = 0.2, for different values

of k, and compare them to the total comoving volume computed within

the same redshift intervals. The effective volume lies always well below

the total comoving volume: this is the consequence of the relatively low

value of the cluster number density, which makes Poisson noise always

dominating. While the total comoving volume V0 increases with redshift,

the effective volume Ve f f starts declining after reaching a maximum, at

z ≃ 0.5, for all wavenumbers. As for the dependence on k, at a fixed red-

shift, the value of Ve f f decreases for both very high and very low values

of k. As shown in the right panel of Figure 3.20, the value of the weight

function Wv(k, z) is maximized at k ≃ 0.01Mpc−1. In fact, for WV ≪ 1

(i.e. Ñ(z)P̄cl(k, z) ≪ 1), the k-dependence of WV reflects that of P̄cl . Pois-

son noise is, again, responsible for the low values of WV , well below

unity. Decreasing of the level of this noise would require increasing the

number density of objects to be included in the survey. This could be ac-

complished in principle by decreasing the mass threshold. However, this

would require bringing into the surveys low-mass clusters and groups,

for which our parametrization of the mass-observable relation may not

still be valid.

So far, we presented results by assuming prior on cosmological pa-

rameters from Planck experiment and no prior knowledge on the mass

parameters. We want to stress that, as already discussed in Sect. 3.4.2,

this is probably too much a conservative approach, in view of the cali-

bration of the relation between robust mass proxies (e.g., YX and Mgas)

and X-ray luminosity for a large number of clusters within the planned

surveys. In Figure 3.21 we show the effect of assuming a prior knowl-

edge of the mass parameters. If we assume the weak priors for these pa-

rameters (see Sect. 3.4.2), constraints are only slightly improved. Quite

interestingly, even assuming the strong prior (i.e. mass parameters fixed)

improves the constraints on σ8, while having a smaller impact on those

for fNL. Indeed, we find that the error on non-Gaussianity only decrease

from σfNL
≃ 10.4 to 10.3 when passing from the no prior to the strong prior

assumption, while the Figure-of-Merit increases from FoMSFT ≃ 39.2 to

≃ 183.2 (table: 3.4).

To better understand the reason for the weak dependence of the fNL

constraints on the uncertain knowledge of the mass parameters, we show
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Figure 3.20: Left panel: the redshift dependence of the effective volume, defined

as in Eq.(3.13), within redshift intervals of constant width ∆z = 0.2, for four

values of the wavenumber k. Short-dashed (green), solid (red), dotted (blue)

and dot-dashed (cyan) curves correspond to k = 0.001, 0.05, 0.1 and 0.2Mpc−1,

respectively. Right panel: the dependence on the wavenumber of the weight

Wv(k, z), defined as in Eq.(3.18), at three different redshifts. Solid (red), dashed

(green) and dotted (blue) curves are for z = 0.5, 1 and 1,5, respectively.

in Figure 3.22 by howmuch number counts and effective bias change with

respect to the value that they take in the Gaussian case, as we vary the

mass bias parameter BM (left panels) and the intrinsic mass-scatter σlnM

(right panels). As a reference value for the non-Gaussianity, we take here

fNL = 10, which is comparable to the forecasted precision with which

non-Gaussianity can be constrained from our analysis. At z = 0.5 the

deviation of the number counts from the non-Gaussianity (upper panels)

varies only by about one part over thousand when a generous range of

variation is allowed for both BM and σlnM, with only a slightly higher

sensitivity to these parameters at z = 1. In the bottom panels of Figure

3.22 we show the sensitivity of the effective bias on mass parameters for

different values of the wavenumber k. Results are shown at z = 0.5 which

is close to the redshift where the effective volume Ve f f reaches its maxi-

mum value (see left panel of Figure 3.20). For the level of non-Gaussianity

assumed here, the deviation from the Gaussian effective bias is negligible

at the wavenumbers, k ≃ 0.01Mpc−1, which are mostly weighted in the

computation of the Fisher Matrix (see right panel of Figure 3.20). How-

ever, as expected, the effect of non-Gaussianity on be f f shows up at very
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Figure 3.21: Constraints at the 68 per cent confidence level on ( fNL,σ8) pa-

rameters by assuming no prior (solid red curve), weak prior (dashed green) and

strong prior (dotted blue) on the mass parameters. All constraints are obtained

by combining cluster number counts and power spectrum information for the

three surveys together. The Fisher Matrix from Planck experiment is included in

the calculation of all constraints.
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large scales, with a deviation with respect to the Gaussian result by & 40

per cent for k ≃ 10−3Mpc−1. This highlights the importance for future

surveys to have a highly uniform calibration of the selection function over

large area of the sky, for them to be able to appreciate any subtle scale

dependence of the bias parameter. Also in this case, any variation with

the value of the mass parameters is far smaller than the deviation from

Gaussianity. This justifies the weak dependence of the fNL constraints on

the uncertain knowledge of the cluster mass calibration.

3.7 Conclusions

In this Chapter, have been presented forecasts on the capability of fu-

ture surveys of galaxy clusters to yield constraints on the parameters

defining Dark Energy (DE) equation of states (EoS), and in the deviation

from Gaussianity primordial perturbations. As for the DE EoS we con-

sider standard parametrization provided by equation (3.1) and the class

of Early DE models of equation (3.2). Our analysis was carried out for

both optical and X-ray future surveys. As for the X-ray, we consider an

experiment which covers wide area and have, at the same time, enough

sensibility to provide accurate measurements of X-ray mass proxies for a

large subsample of clusters. The proposed WFXT answer such require-

ments so we use this experiments as a reference mission concept along

with the Wide (20000 sq.deg.), Medium (3000 sq.deg.) and Deep (100

sq.deg.) survey configurations. As for the optical band, we consider the

optical near infrared EUCLID mission with a survey area of 20000 sq.

deg., and a mass limit approximately constant (M200,c ≃ 2 × 1014M⊙)
over the entire redshift range (0.2 < z < 2).

In order to conduct our analysis we develop a code that calculate the

Fisher Matrix by combining information on the cluster number density

and power spectrum.

As for forecast on the standard DE, we carry out our reference analysis

for the WFXT Bright Sample (see Table 3.1). The main results of this study

can be summarized as follows.

(a) When constraining the parameters of the DE EoS of equation (3.1), we

further demonstrate the fundamental importance of having a well

calibrated X-ray observable-mass relation and, most importantly, its

redshift evolution.
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Figure 3.22: Effect of changing the values of the mass parameters of mass bias

BM (left panels) and intrinsic mass scatter σlnM on the deviations of number

counts and effective bias from the Gaussian case. The results shown here are

obtained by assuming a mass-limit of 1014M⊙. The reference value of non-

Gaussianity assumed here is fNL = 10. N is the ratio between the redshift distri-

butions in the Gaussian and non-Gaussian cases, while B is the ratio between the

effective bias, as defined in Eq. 3.12, in the Gaussian and non-Gaussian cases.

Upper panels show the results for number counts and effective bias at two dif-

ferent redshifts, z = 0.5 and z = 1. Lower panels show results for the effective

bias at z = 0.5 for different wavenumbers, k = 0.1, 0.01 and 0.001 Mpc−1.
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We verified that the Figure of Merit (FoM) of the DE EoS increases

up to 106 when we assume a strong prior on the mass parame-

ters, as resulting from a precise and robust calibration of the mass-

observable relation, with respect to the case in which no such prior

is available (FoM = 61) (see Table 3.3). Such an internal calibration

can be achieved only by having at least ∼ 103 net photon counts for

each cluster included in the survey.

(b) We find that the Medium survey is the one carrying most of the con-

straining power (Table (3.2)), since this survey is expected to yield

the largest number of cluster out to redshift z ∼ 1. As such, it shows

the tightest constraints on the evolution of the DE EoS (σw0 = 0.097

and σwa = 0.54) and the corresponding highest Figure of Merit (FoM

= 60). The Deep survey, although covering a much smaller area

than the Wide survey, adds an important contribution to constrain

DE parameters (FoM = 20).

(c) We quantified the increase of the constraining power from the three

surveys separately and from their combination, by adding progres-

sively information from the cluster number counts, the mean cluster

power spectrum analysis and the CMB prior from Planck experi-

ment. We summarize in Figure 3.15 the resulting improvements

on FoM. The slightly different directions of degeneracy of the con-

straints in the (w0.wa) parameters space from cluster number counts

and power spectrum explains why the constraints substantially im-

prove when we consider the two contribution together rather then

separately. We verified that adding the CMB information improve

the corresponding constraints on the DE EoS, mostly as a conse-

quence of the constraint provided by CMB data on the geometry of

the Universe (right panel of Figure 3.11).

(d) We find that RSDs carries important cosmological information through

the linear growth of perturbations, also in the case of cluster sur-

veys. Indeed, the DE FoM from the power spectrum analysis of the

Wide survey increases by a factor 35 when including RSDs, while

increasing by a factor 7.7 and 6.8 for the Medium and the Deep

surveys, respectively.

(e) As for the information carried by the shape of the power spectrum,

a smaller increase in the FoM is instead measured when includ-
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ing BAOs. In this case the FoM from the power spectrum analysis

of the Wide survey increases by a factor of 2, while no significant

information on BAOs is provided by the Medium and the Deep sur-

veys. Furthermore, relaxing the assumption of CDM and treating

the shape of the power spectrum as a free parameter reduces the

FoM by a factor of 1.7 in the analysis of the Wide survey.

We extend the analysis carried out for the standard DE EoS to the

Early-DE one. Such analysis confirm that the Medium survey is the one

carrying most of the information on the DE EoS, and emphasize once

more the importance of tracing cosmic growth over the widest possible

range of redshift. By extending the redshift range of the sample and

with the ability to internally calibrate the observable-mass relation, we

expect to measure the EDE EoS parameter (ΩDE) with an uncertainty of

σΩe,de
= 6.6× 10−4 .

We extend our analysis for standard DE model to optical based EU-

CLID mission. and we find constraints the w0 and wa at the level of

σw0 = 0.02 and σwa = 0.13 and a FoM=785, by combining results from

EUCLID survey and Planck experiment.

Further analysis carried out in order to forecast constraints on non-

Gaussian initial perturbations scenario indicates that the optimization of

the survey strategy depends on the class of cosmological models that

one wants to constrain. We used for this analysis the Detection Sample of

WFXT (see Table 3.1). We showed forecasts for the two parameters that,

for a fixed expansion history, define the timing of cosmic structure for-

mation, namely σ8 and fNL, while marginalizing over all the remaining

parameters. Informations on such constraints are quantified by introduc-

ing the figure-of-merit for structure formation timing of Eq.(3.16).

The main results obtained from non-Gaussian analysis can be summa-

rized as follows.

(a) Power spectrum and number counts of galaxy clusters are highly

complementary in providing constraints: while the former is sen-

sitive to deviations from Gaussianity, through the scale dependence

of the bias, the latter is mostly sensitive to σ8.

(b) Most of the constraining power for these two parameters lies in the

Wide Survey, while the Medium and the Deep Surveys play an im-

portant role for the estimate of X-ray mass proxies for ≃ 2× 104

clusters out to z ∼ 1.5.
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(c) Combining number counts and power spectrum information for the

three surveys turns into ∆ fNL ≃ 10 for the 1σ uncertainty with

which a deviation from Gaussianity associated to a “local shape”

model can be constrained. Correspondingly, we find FoMSFT ≃ 39

for the figure-of-merit of structure formation timing.

(d) The value of FoMSFT significantly worsens when assuming more con-

servative priors on the nuisance parameters, the above constraint on

fNL is weakly sensitive on such priors.
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Chapter 4

Cosmological constraints from

current X-ray cluster surveys

As we showed in the previous Chapter, the evolution in the number den-

sity and the power spectrum of massive galaxy clusters can be used to

constraints Dark Energy (DE) parameters from future X-ray and optical

surveys. However, theoretical predictions always provide the number

density and power spectrum bias of clusters as a function of mass, which

is not a directly observed quantity. Consequently, we rely on observable

quantities such as X-ray temperature, weak lensing shear, or other such

signals, to estimate cluster masses. This link between the observable mass

tracer (or proxy) and the theoretical cluster mass is the dominant source

of systematics uncertainty in the analysis (e.g. Henry et al., 2009). More-

over, a cluster sample is needed which spans a large z range. In fact, we

showed that constraints on DE Equation of State (EoS) parameters can be

substantially improved by extending the redshift range over which the

evolution of perturbation growth is studied.

In Section 1.10, we summarized the current state of constraints on

cosmological parameters provided by the last X-ray (e.g. Vikhlinin et al.,

2009b; Mantz et al., 2010a) and optical (e.g. Rozo et al., 2010) analyses.

According to the ΛCDM model, the w parameter, describing the DE

EoS, is constant and equal to −1; observational signatures of possible

deviations of w from such value are very small, and hence a great ef-

fort is necessary to the treatment of the systematic errors. In this sense,

it is crucial that DE constraints at this level of accuracy are obtained

from combination of several independent cosmological tests. Such com-

bined analysis reduces systematics and improves statistical accuracy on

149
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the models parameters in general, by breaking degeneracies among them.

In fact, while constraints obtained on DE EoS parameters from 400d X-

ray cluster survey alone are w = −1.14± 0.21 in a spatial flat Universe

(Vikhlinin et al., 2009b), by combining results from CMB (Dunkley et al.,

2009), SN Ia (Miknaitis et al., 2007), and BAO in the SDSS survey (Eisenstein et al.,

2005), and from 400d cluster survey (Vikhlinin et al., 2009b), one obtains

w = −0.991± 0.045.

In this scenario, our analysis has been thought to explore the con-

straining power of cluster mass function at high redshift. To this aim,

we use a sample of nine galaxy clusters at redshift z ≥ 0.8, selected in

the X-ray RDCS catalogue (Rosati et al., 1995, 1998). Despite the fact

that in the last few years the number of clusters detected at high-z in-

creased from a handful to a few tens (e.g. Williamson & the SPT Team,

2011; Fassbender et al., 2011), high redshifts RDCS sample has the advan-

tages that all the clusters are spectroscopically confirmed and the major-

ity of them have very good mass determinations from extensive Chandra,

HST and VLT follow-up programs carried out in the last ten years. The

detection of high redshift massive clusters with XMM and SZ surveys

have been used recently to quantify possible deviations from the ΛCDM

model (e.g. Mortonson et al., 2011; Jee et al., 2011; Hoyle et al., 2011). In

this prospect, having a well defined survey selection function and ac-

curate mass measurements of the majority of clusters in our sample, we

have studied how results obtained on cosmological parameters from clus-

ters surveys at redshift z ≃ 0.5 (Vikhlinin et al., 2009b) can be extended

to redshifts higher then 0.8, by combine the high-z RDCS sample with

the Vikhlinin et al.’s sample. In this way, we strengthen cosmological

constraints by computing for the first time the mass function at redshift

z ≥ 0.8.

4.1 The ROSAT Deep Cluster Survey

4.1.1 The sample selection

The RDCS sample was constructed from a serendipitous search for ex-

tended sources in deep pointed observation from the ROSAT PSPC archive

with exposure time longer than 15 ks. We refer to Rosati et al. (1995) for

a full discussion of the analysis of the X-ray data and the selection tech-

nique for the RDCS sample.
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A wavelet detection algorithm (WDA) was used to identify and mea-

sure the angular extent of X-ray sources. The multi-scale analysis per-

formed by the WDA reduces biases against low surface brightness source

and is particularly efficient in minimizing the confusion effect, the main

limiting factor in deep X-ray images and in separating extended from

point-like emission. Over 160 cluster candidates were selected in 180

PSPC fields scattered across the two galactic caps (|b| > 20o) as sources

with an extent exceeding the local PSF with a 90% confidence level, which

was statistically determined by a control sample of several thousands

sources (Rosati et al., 1995, 1998).

The completeness flux limit of the survey is determinated by the flux

level at which extended and point like emission can be reliably distin-

guished. In addition, the completeness depends critically on the off-axis

angle θ within which the candidates are selected; because of the PSF

degradation, the selection function was modelled by using a combination

of simulation and control sample of known distant clusters and by study-

ing number counts as a function of the limiting X-ray flux, fx, and θ. The

final sky coverage as calculated in Rosati et al. (1995) is plotted in Figure

4.1. For comparison, we show in Figure 4.2 the overview of the refer-

ence flux limits and areas of all major cluster surveys carried out after the

completion of the ROSAT all-sky survey. In particular dark circles in this

figure represent the ROSAT serendipitous surveys, like RDCS, that were

constructed from thousands of pointed observations by selecting cluster

candidates from a serendipitous search for extended X-ray sources above

a given flux limit.

The final RDCS sample contains 103 spectroscopically confirmed clus-

ters at z ≤ 0.85 identified over an area of approximately 50 deg2 down

to the flux limit Flim = 3× 10−14 erg s−1 cm−2 (RDCS-3). In Figure 4.4

we show the differential redshift distributions of the sample. RDCS-3 has

overall a median redshift zmed = 0.29, with zmax = 0.85; 26 clusters lie at

z > 0.5, and 4 clusters at z > 0.8. One more cluster, XMMU-J0236.1-5254,

which remained spectroscopically unidentified in RDCS-3, has recently

been rediscovered in the XDCP survey (Fassbender et al., 2011) and its

redshift measured at 0.865 (this cluster is included in Figure 4.4). We

stress also that the cluster RDCS-J0152.7-1357 has been considered as a

single system although both the optical galaxy distribution and the Chan-

dra X-ray observation show two distinct clumps (see Figure 4.5). More-

over the dynamical analysis conducted by Demarco et al. (2007) shows

that the velocity distribution of the cluster is consistent with two groups
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Figure 4.1: Sky coverage as a function of X-ray flux of RDCS sample

(Rosati et al., 1998).
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Figure 4.2: Areas and flux limits of X-ray cluster surveys carried out from the

ROSAT all-sky observations. The light circles represent surveys covering con-

tiguous areas, while the dark circles represent serendipitous surveys constructed

from ROSAT-PSPC pointed observations. Figure adapted from Rosati et al.

(2002).
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that are also responsible for the projected elongation of the cluster. How-

ever, since the two clumps of RDCS0152.7-1357 lie within 1 Mpc (the two

cores are 0.7 Mpc apart), we consider it as a unique massive object in a

merging phase.

Several other clusters with z < 0.9 have been identified in the RDCS

at FX < 3× 10−14 erg s−1 cm−2. A deeper sub-sample of four clusters

identified down to Flim = 1 × 10−14 erg s−1 cm−2 in the redshift range

0.90 ≤ z ≤ 1.26 (RDCS-1) is defined, whose redshift distribution is also

shown in Figure 4.4. As discussed in Rosati et al. (1998), the sample is

well characterized and complete at fluxes & 3× 10−14 erg s−1 cm−2. Below

such value, the completeness of the sample becomes not as solid because

with . 50 counts, which roughly corresponds to the above flux for the

typical exposure time of the selected PSPC fields, the detection and char-

acterization of extended sources becomes increasingly uncertain. Despite

such uncertainties of the sky coverage at fluxes . 3× 10−14 erg s−1 cm−2,

several follow-up analyses have suggested a substantial completeness of

the sample and the correct characterization of the sky coverage down to

fx ≃ 1× 10−14 erg s−1 cm−2. Borgani et al. (2001) showed that the XLF

evolution traced by brighter clusters at z . 0.85 also extends at fainter

fluxes out to the highest redshift reached by RDCS. In Figure 4.3, we

show the cumulative surface density of clusters above a given flux limit

versus the flux value (the cluster LogN-LogS relation) as obtained for dif-

ferent cluster survey. In order to take into account the difference between

the total and the observed fluxes, the LogN-LogS relation is computed by

assigning to each cluster a weight equal to the inverse value of the area for

its observed flux. Results from Finoguenov et al. (2007) from the XMM

COSMOS survey found a good agreement with LogN-LogS relations of

the RDCS sample (Rosati et al., 2002) for fluxes fx > 10−14 erg s−1 cm−2.

We define and use in this work a high-z low flux cluster sub sam-

ple of nine clusters from the RDCS catalogue (zRDCS-1 hereafter). This

new sample is shown in Figure 4.4 with magenta boxes. In Figures 4.5

and 4.6 we show the optical/nearIR colour images on the nine clusters

with overlaid X-ray contours. In Table 4.1 are presented the details of the

zRDCS-1 sample, whose redshift range starts at z = 0.805 and extends to

z = 1.273, with the median redshift z̃ = 0.865. Extensive follow-up obser-

vations over the last decade have been performed in order to measure the

mass of these clusters with different methods, minimizing the possibility

of systematics errors. These include WL masses from HST observations,

hydrostatic masses from Chandra data and spectroscopical analysis from
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Figure 4.3: Cumulative cluster number counts. The black solid histogram

shows the data for the XMM COSMOS survey, and grey histograms denote

the 68% confidence interval (Finoguenov et al., 2007). The black solid/short-

dashed curve shows the results from modelling the evolution of the RDCS sam-

ple (Rosati et al., 2002), with the solid part corresponding to fluxes sampled by

RDCS, while the short-dashed curve denotes the prediction for evolution in the

luminosity function. The long-dashed curve shows the prediction for no evolu-

tion in the luminosity function (Rosati et al., 2002).

VLT.

For two clusters, RDCS-J0337-34 and RDCS-J0236-52 (Figure 4.5), no

follow up Chandra HST observations are available at present. The XMM

serendipitous pointing on 0236-52 (Fassbender et al., 2011) is to shallow

to provide useful temperature. For the two clusters, we resort to mass

estimates from the well established LX − M relation at relatively high

redshift (Maughan, 2007)

4.1.2 Mass measurements

Weak-lensing masses. In order to derive the lensing mass from the tan-

gential shear, Jee et al. (2011) used the parametrized halo model fitting
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Figure 4.5: Optical/nearIR colour images with overlaid X-ray contours from

Chandra, unless otherwise noted, for the five clusters of zRDCS-1 sample at

0.8 < z < 0.9. Figures adapted from Holden et al. (2002) (RDCS 1350+60, RDCS

1317+29), Blakeslee et al. (2006) (RDCS 0152-13), Fassbender et al. (2011) (RDCS

0236-52).
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Figure 4.6: Optical/nearIR colour images with overlaid X-ray contours from

Chandra, for the four clusters of zRDCS-1 sample at 1 < z < 1.3. Figures from

Stanford et al. (2002) (RDCS 0910+54), Rosati et al. (2004) (RDCS 1252-29), and

Stanford et al. (2001) (RDCS 0849+4452, RDCS 0848+4453).
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Table 4.1: Properties of the zRDCS-1 clusters. Column 2: redshifts. Column 3:

effective exposure time after removal of high background intervals from Chandra

observations (Balestra et al., 2007). Column 4: X-ray gas temperature. Column

5: R200 radius encompassing the density contrast ∆c = 200 with respect to the

critical density ρc(z). Column 6: total mass at the radius inside R200,c as obtained

from the hydrostatic method. Column 7: cluster mass within R200,c as obtained

from weak lensing analysis (Jee et al., 2011).

Cluster z texp TX R200,c MX,200c MWL,200c

[ks] [keV] [kpc] [1014M⊙] [1014M⊙]

J1350.0+6007 0.804 58 5.6 ± 1.0 1151 ± 103 4.3 ± 1.1 -

J1317.4+2911 0.805 110.5 5.1 ± 1.8 1100 ± 199 3.7 ± 2.0 -

J0152.7-1357 0.831 36 7.6 ± 1.1 1324 ± 100 6.7 ± 1.5 4.4+0.7
−0.5

J0337.4-3457 0.840 - - - - -

J0236.1-5254 0.865 - - - - -

J0910+5422 1.106 170 5.9 ± 1.4 991 ± 116 3.9 ± 1.4 5.0+1.2
−1.0

J1252-29176 1.237 188.4 7.0 ± 1.3 1008 ± 97 4.7 ± 1.4 6.8+1.2
−1.0

J0849+4452 1.261 184.5 4.0 ± 0.8 749 ± 75 2.0 ± 0.6 4.4+1.1
−0.9

J0848+4453 1.273 - 1.8 ± 0.4 458 ± 63 0.5 ± 0.2 3.1+1.0
−0.8

The values of the involved cosmological parameters are

Ωm = 0.3 and h = 0.7 in the ΛCDM model.
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method (see also Section 2.1.2). By assuming a projected mass density

profile (e.g. NFW Navarro et al. (1997), Singular Isothermal Sphere), the

tangential shear (see Figure 4.7) is computed and compared with the mea-

sured values, whose errors are strictly related to the mean ellipticities

measurements of the backgrounds galaxies. In particular, such errors

are determined by the surface density of background galaxies and the

signal-to-noise of each measurement (associated to the depth and angu-

lar resolution of the observations). As a results they became very large

towards the cluster centre.

In the calculation of the masses of the clusters belonging to the zRDCS-

1 sample, the assumed halo model is the NFW profile. When NFW pro-

files (Eq. 2.7) are calculated, it is assumed that the cluster virial mass

M200,c is tied to the concentration c via the relation from Duffy et al.

(2008):

c = 5.71

(

M200,c

2× 1012 [h−1M⊙]

)−0.084

(1+ z)−0.47 . (4.1)

Then the two-dimensional projected mass distribution κ is calculated (see

central and right panels in Figure 4.7). In principle, κ can be obtained by

convolving the shear γ as follows (Kaiser & Squires, 1993):

κ(x) =
1

π
D ∗ (x − x′)γ(x)d2x , (4.2)

where D(x) = −1/(x1 − ix2)
2 is the convolution kernel. However, a

more robust two-dimensional mass reconstruction algorithm is required

in practical applications and in particular the masses reported in Table 4.1

are calculated in Jee et al. (2011) by reconstructing the two-dimensional

mass maps with the entropy-regularized, maximum likelihood code of

(Jee et al., 2007). We refer to these two papers for details in the calculation

of clusters mass with weak lensing analysis.

As part of the systematic error budget, we stress that for clusters at

such a high redshift the uncertain knowledge of the mean redshift of the

background galaxies has a non negligible effect on the final mass estimate

(as mentioned in Section 2.1.2). The masses obtained from weak lensing

analysis for five out of nine clusters are reported in Table 4.1.

Hydrostatic masses. The X-ray masses in the same Table have been

calculated assuming the hydrostatic equilibrium using Eq. 2.12 , as de-

tailed in Ettori et al. (2004), for those clusters with Chandra observations.
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These measurements have been computed using the latest Chandra cal-

ibration files. Despite the large Chandra exposure times (see Table 4.1),

these clusters are so faint that only a few thousand counts are available

and hence a single temperature measurement is possible. Thus, the hy-

drostatic masses are computed in the isothermal case using the depro-

jected gas density profile which is well determined thanks to Chandra

high angular resolution. However, it remains generally difficult to trace

the X-ray surface brightness profile beyond r500,c, therefore mass density

profiles are extrapolated to r200 assuming a NFW profile (Eq. 2.7). For

the isothermal case, the mass errors depend essentially on the accuracy

of the temperature and the parameters of β profile which describes the

gas density. The masses of seven out of nine clusters of our sample are

reported in Table 4.1.

Finally, for two clusters of our high-z sample, RDCS-J0337.4-3457 which

has only ROSAT observations from the original RDCS detection, and

XMMU-J0236.1-5254 which is serendipitously present in a XMM shallow

pointing, the masses have been estimated from their X-ray luminosities

using the LX-M500,c relation by Maughan (2007) (Eq. 3.14).

In the following analysis, we use the WL masses when available and

the X-ray masses for the other clusters. preliminary investigation shows

that results do not change significantly by using X-ray masses for all the

clusters of our sample.

4.2 The analysis method

In this Section, we present the method to obtain the constraints of the

cosmological parameters from our zRDCS-1 sample. We develop a fitting

algorithm based on the MonteCarlo Markov Chain (MCMC) and the max-

imum likelihood (ML) criteria to compare the cluster distribution in the

mass-redshift plane with predictions from different cosmological models

for a sample characterized by the zRDCS-1 sky-coverage.

We divide the plane of redshifts and measured masses (Mob, z) into

narrow elements of size dM dz. If the bin size is small enough, we will

have at most one cluster of the sample per bin, and, according to Cash

(1979), we can compute the logarithm of the likelihood function as:

ln L = ∑
i

ln
(

P(Mobi , zi)∆Mi

)

−
∫ zmax

zmin

P(Mob, z) dM
′
ob dz

′ . (4.3)
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Figure 4.7: Mass reconstruction of RDCS-J1252-2927 cluster (see also Figure 4.6,

top right panel). Top panel: filled circles represent the reduced tangential shears

and the dashed line represents the NFW model fit. Bottom left panel: the mass

reconstruction, whose colour represents the mass density. Bottom right panel:

mass contours overlay on the pseudo-colour composite created by combining

the i775 and z850 HST images. The green "X" symbol marks the location of

the X-ray peak in the Chandra image. Spectroscopically confirmed members are

encircled in red. Figures from Jee et al. (2011).
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where P(Mobi , zi) is the cluster number density in the zi and Mob,i bin. In

the above equation the sum runs over the bins which contain one cluster

and zmax represents the highest redshift at which the cluster RDCS identi-

fication algorithm can detect extended sources. We point out that, in prin-

ciple, zmax does not coincide with the highest redshift cluster identified

in the survey because of the redshift cut-off due to the surface brightness

dimming. We choose in our analysis zmax = 1.5.

The probability density distribution of clusters is given in principle by

the product of the theoretical mass function and survey comoving volume

at redshift z and mass M. In order to take into account the difference

between the observed mass (Mob) and the true mass (Mtr) of clusters,

we use the same approach presented in Section 3.3.1. The probability

P(Mob,i, zi) is then

P(Mob,i, z) =
∫ ∞

0

dn

dMtr

dV(Mtr, z)

dz
[erfc(xi−1/2)− erfc(xi+1/2)] dMtr

(4.4)

where dn/dM is the mass function. In this analysis, we use the calibra-

tion of the halo mass function by Tinker et al. (2008), which is formally

accurate to better than 5% for the cosmologies close to the concordance

ΛCDM cosmology and for the mass and redshift range of interest in our

study; at this level, the theoretical uncertain- ties in the mass function do

not contribute significantly to the systematic error budget.

In Eq. 4.4 er f c(x) is the complementary error function and xi =
x(Mob,i) is

x(Mob) =
lnMob − BM − lnM

√

(

2σ2
lnM

)

. (4.5)

In this equation the scatter in the relation between true and observed

mass σlnM is the total uncertainties of the mass estimates. The scatter

includes the intrinsic scatter and the measurement errors

σlnM =
(

σ2
intr(z) + σ2

meas,i

)1/2
. (4.6)

where the intrinsic scatter evolves with redshift as

σintr(z) = σintr,0(1+ z)β (4.7)

and σmeas,i varies from cluster to cluster. The mass bias BM evolves with

redshift as

BM(z) = BM,0(1+ z)α . (4.8)
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Once the cluster likelihood function is computed we define the quan-

tity −2 ln L, whose statistical properties are equivalent to the χ2 distribu-

tion (Cash, 1979), to find the best fit parameters. We derive constraints on

cosmological parameters by searching for the absolute minimum of the

χ2 distribution in the N-dimensional parameter space. We explore the

parameters space by using the MCMC approach.

We carry out our analysis for the zRDCS-1 sample for the ΛCDM

model assuming no prior on the considered cosmological parameters. A

second analysis is performed by using the constraints from 400d sample

(Vikhlinin et al., 2009b, 1) as a prior. In this case the χ2 is defined as

χ2 = −2 ln P where P is posterior probability (see Appendix A) calculated

by combining the likelihood from the zRDCS-1 and the 400d samples for

each step in the parameters space explored with the MCMC. Moreover,

we study constraints on the DE EoS w(a) = w0 + wa(1− a) as obtained

from the zRDCS-1 data alone and from the combination of the zRDCS-1

and the 400d samples; both analyses have been carried out in the case of

a flat Universe.

4.2.1 Survey Volume

As we empathized in Chapter 2, a critical component in the analysis of

cluster survey is the determination of the effective survey volume. In

order to fit mass function models to the data, we need to know the survey

volume as a function of mass. The zRDCS-1 sample is derived from a

purely X-ray flux limited survey, thus we can compute the survey volume

per unit redshift interval as

dV(M, z)

dz
= Ω( fX)

dV(z)

dzdΩ
(4.9)

where Ω( fx) is the flux-dependent sky coverage (see Figure 4.1) and

dV/dz/dΩ is the comoving volume element per unit solid angle.

The X-ray flux is related to the luminosity LX as

f =
LX

4π dL(z)2
K(z), (4.10)

this relation depends on the cosmological background through the lumi-

nosity distance dL(z) and the K-correction factor that converts the flux

1The likelihood calculated in each point of the parameters space for the ΛCDM and
the standard DE models are available on http://hea.iki.rssi.ru/400d/cosm/chi2grids
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measured in a given band (0.5-2 keV as we use here) from an object at

redshift z to an equivalent measurement in the rest frame of the object.

A dominant source of uncertainty in the measurements of the volume

dV(M, z)/dz is the details of the LX − M relation. To take such uncer-

tainties into account in our analysis, we calculate the survey volume at

redshift z as

dV(M, z)

dz
=
∫

L

dV(z)

dzdΩ
P(LX |M, z)Ω(L, z)dL , (4.11)

where P(LX |M, z) is the probability for a cluster with true mass M to

have a luminosity LX at redshift z.

The simplest model that describes the observed LX − M relation (see

Section 2.2.3) is a power lawwith log-normal intrinsic scatter, σlnM around

the mean which is assumed to be independent from mass and redshift

P(ln L|M) ∝ exp

(

− (ln L− ln L0)
2

2 σ2
ln L

)

, (4.12)

where

L0 = A E(z)γ Mη (4.13)

In such equation we assume that the redshift evolution changes the nor-

malization but keeps constant the slope of the power law, thus, the LX −
M relation is characterized by four parameters, A, η, γ and the scatter

σln L.

Observational determinations of the LX − M relation can be signifi-

cant affect by the Malmquist bias (MB). According to this effect in a flux

limited sample, the intrinsically most luminous objects can be observed

up to a higher distance, giving the impression that the average luminosity

of the population increase with redshift. The MB effect becomes strong if

the scatter in LX for fixed M is large (e.g. Stanek et al., 2006; Nord et al.,

2008).

We note that in addition to the Poisson cluster counting uncertainties,

there is sample variance in the number of clusters in a survey of limited

volume due to large-scale clustering. Depending on the mass scale, the

sample variance can be comparable to, or larger than, the Poisson errors

(Hu & Kravtsov, 2003). Assuming that the individual pointings are un-

correlated (a good assumption for the widely separated pointings of the

RDCS survey), we can neglect the contribution of the sample variance in

our analysis. We should note however that each RDCS pointing covers at
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z ∼ 1 approximately 7 Mpc (or 15 Mpc comoving), therefore to some level

clustering effect on the mass function determination are not completely

negligible.

4.3 Results

We present results on constraints parameters for two cosmological mod-

els, ΛCDM one and the standard DE one (i.e. with the DE EoS parametrized

as in Eq. 3.1).

The first model is characterized by five parameters: the present day

matter density parameter Ωm, the normalization of the power spectrum

σ8, the Hubble parameter h, the constant DE EoS parameter w0, the

baryon critical density Ωb, and the primordial spectral index ns. In order

to describe the standard DE model, we need a further parameter wa that

accounts for the evolution with redshift of the DE EoS according to Eq.

3.1. In both models, the geometry of the Universe is assumed to be flat,

Ωb is fixed at the best value found by the combined analysis of WMAP-7,

BAO and SNIa data provided by Komatsu et al. (2011), Ωb = 0.046. The

spectral index is assumed to be ns = 0.95 in agreement with the results

from the WMAP-7 analysis. Following Vikhlinin et al. (2009a), we keep

fixed this parameter although it has a quite strong influence on the timing

of structure formation and is thus significantly degenerate with σ8.

Together with cosmological parameters, we include in our analysis

the so called mass parameters which describe the relation between the ob-

servable and the mass of clusters. We applied in this analysis the same

approach used in the previous Chapter and explained in Section 3.4.2.

Thus we consider four mass parameters: the fractional mass bias BM, the

intrinsic scatter σlnM and their evolution with redshift as parametrized in

Eqs. 4.8 and 4.7. In addition, we include in our fitting procedure the four

parameters that describe the LX − M relation, according to Eqs. 4.12 and

4.13 (we call them hereafter L-M parameters).

In summary, we carry out our analysis by constraining at once the

parameters that describe the constant DE EoS model (Ωm, σ8, w, h) or the

DE standard model (Ωm, σ8, w0, wa, h), the four parameters that account

for the uncertainties in the estimation of the cluster mass (Bm, σlnM, α, β),

and the four parameters that treat the effect of the Malmquist Bias on a

flux limited sample (A, η, γ, σln L). The values obtained in the ΛCDM and

DE standard models from the analysis of the zRDCS-1 sample alone, for
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Table 4.2: Best fit values for the mass and L-M parameters defined by Eqs. 4.7,

4.8 and 4.13 with their respective errors, for both the ΛCDM and standard DE

model analysis carried out with the zRDCS-1 sample.

zRDCS-1

ΛCDM DE

BM(z = 0) -0.052 ± 0.024 -0.043 ± 0.027

σlnM(z = 0) 0.28 ± 0.13 0.24 ± 0.11

α 0.034 ± 0.012 0.030 ± 0.015

β 0.15 ± 0.09 0.13 ± 0.08

A 3.859 ± 0.054 3.853 ± 0.067

γ 2.1 ± 0.31 1.9 ±0.29

η 1.54±0.25 1.52±0.23

σln L 0.422± 0.075 0.407± 0.069

the mass and the L-M parameters are presented in Table 4.2. The errors

at 68% have been obtained for each parameter after marginalizing over

all the others.

The best fit values for the L-M parameters are in agreement with those

obtained by Vikhlinin et al. (2009a) (their Eq. 22) from a sample with me-

dian redshift z̃ = 0.5 and also with the luminosity-mass relation provided

by Maughan (2007) for clusters at redshift up to 1.3 (see their Table 1).

The calibration of the LX −M relation is the most important source of

uncertainty in the calculation of the effective survey volume (Eq. 4.11).

The effect is stronger for the high-z data because the LX − M relation

is derived using a small number of clusters, with larger measurement

uncertainties. In particular, the observed high value of the scatter σln L

in the LX − M confirms that the Malmquist bias effects are significant, as

expected for the zRDCS-1 sample which lies near the detection limit of

the RDCS survey. The effect of the σln L scatter is also important when the

X-ray luminosity is used to compute the total mass of a cluster as we do

only for the RDCS-J0337.4-3457 and XMMU-J0236.1-5254.

As for the mass parameters, we present in the Table 4.2 the best fit

values derived from the analysis of the ΛCDM and standard DE models

for the zRDCS-1 sample. We see that a mild evolution with redshift for

the mass bias BM and especially for the scatter σlnM parameters is sug-

gested. As of today there are no strong constraints on the evolution of

such parameters that, as showed in Section 3.6.1, affect the accuracy of
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constraints on cosmological parameters in a significant fashion.

In the following, we show constraints on cosmological parameters fo-

cusing on those that describe the DE component of the Universe. The

analysis is performed using the zRDCS-1 sample for both the ΛCDM

and the standard DE model, keeping the mass and the luminosity pa-

rameters fixed at the reference values reported in Table 4.2. The results

from Vikhlinin et al. (2009b) are used as priors information in our analy-

sis.

Vikhlinin et al. selected two cluster samples, originally compiled from

ROSAT X-ray surveys (Vikhlinin et al., 2009a). The low redshift sample

includes the 49 highest-flux clusters detected in the All-Sky Survey in the

redshift range 0.025 < z < 0.15 (z̃ = 0.05). The second sample includes

37 objects detected in the 400d survey, at redshift 0.35 < z < 0.9 (z̃ = 0.5).

All the clusters have been observed with Chandra. Thus, different proxies

(TX,Mgas,YX,) have been computed to estimate the mass of each system.

As we do in our analysis, Vikhlinin et al. take into account the errors in

the calibration of the mass scaling relations and measurement errors in

the computation of the likelihood function on the model parameters, and

the evolving LX − M relation was internally calibrated in the computa-

tion of the survey volume. The cosmological parameters considered in

Vikhlinin et al. (2009b) are (Ωm, σ8, w, h) for the ΛCDM model and (Ωm,

σ8, w0, wa, h) for the DE standard model.

We present our results by computing 68% and 95% confidence level

for each pair of interesting parameters, obtained marginalizing over all

the other parameters.

4.3.1 High redshift cluster mass function

We run the MCMC algorithm and calculate the likelihood for the (Ωm, σ8,

w, h) parameters according to the ΛCDM model from the zRDCS-1 and

400d sample. We fixed the L-M parameters to the best values in Table 4.2

and we assume the Universe to be spatially flat. By using the best fit set

of cosmological parameters obtained from this analysis, we compute the

survey volume following Eq. 4.11, and we compute the cumulative mass

function as

N(> M) = ∑
Mi>M

(

dV(Mi, z)

dz

)−1

. (4.14)
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In this equation V(Mi) is the sample volume element integrated over the

redshift range of the zRDCS-1 sample. Figure 4.8 shows the cumulative

mass function that we obtain for 0.8 < z < 1.3 compared with results

from Vikhlinin et al. (2009a) at redshifts z ≃ 0 and z̃ ≃ 0.5. We point out

that this is the first robust measurement of the cluster mass function at

z > 0.8.

A significant decrease in the comoving cluster number density at a

fixed mass is observed among different redshift intervals, by a factor of

5 at M500 = 2.5 × 1014 h−1 M⊙ between z = 0 and z̃ = 0.5, and by a

factor of 7 between z̃ = 0.5 and z̃ = 0.865. This reflects the growth

of cosmic structure between these redshifts. The observed evolution of

the cluster mass function is in good agreement with prediction from the

ΛCDM cosmological model (solid line in Figure 4.8). In order to calculate

the predicted mass function we use the prescription from Tinker et al.

(2008); the theoretical mass functions shown in Figure 4.8 were calculated

respectively at redshift z = 0, z = 0.5 and z = 0.865. In fact, z = 0.5

is close to the median value of the high-z sample from Vikhlinin et al.

(2009a) and z = 0.865 is the median redshift for the zRDCS-1 sample.

Following Vikhlinin et al. (2009a), when showing the mass function at

varying redshifts we use the ΛCDM parameters, with Ωm = 0.3, for the

measurements and the theoretical mass function curves (Figure 4.8).

4.3.2 Constraints on σ8 and Ωm

The normalization of the cluster mass function is exponentially sensitive

to σ8. On the other hand, determination of σ8 is highly sensitive to sys-

tematics effects in the calibration of the observable-mass scaling relations

as we showed in the forecast analysis from WFXT surveys (see Section

3.6.1). In fact, Huterer & White (2002) show that if Mtot for a fixed value

of TX is varied by a factor of 1.5, the value of σ8 derived from the local

cluster temperature function changes by ∆σ8 ≈ 0.13.

It is well known that constraints on σ8 from the cluster abundance data

show a strong degeneracy with Ωm. The mass function determines the

r.m.s. amplitude of fluctuations at the given mass scale. The correspond-

ing length scale is a function of Ωm (M ∼ Ωml
3) and, thus, the derived

σ8 depends also on Ωm and more weakly on the local slope of the linear

power spectrum (White et al., 1993).

Final results obtained on σ8 and Ωm parameters in the ΛCDM sce-

nario from the combined analysis of the zRDCS-1 and 400d sample are
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presented in the Figure 4.9 (right panel). For comparison, we also show

the results obtained from 400d data alone (Vikhlinin et al., 2009b) in the

left panel of Figure 4.9. The best fit values obtained from the analysis of

the zRDCS-1 sample using the 400d sample as a prior are:

σ8 = 0.81± 0.07 Ωm = 0.24± 0.06 .

Measurements based on different cosmological probes such as lensing

shear surveys and WMAP-7, are all consistent at 68% CL with our best fit

value for σ8.

4.3.3 Constraints on Dark Energy parameters

First we show constraints on DE in a spatially flat Universe as obtained

from the combination of the zRDCS-1 and the 400d sample. We run the

MCMC and compute the posterior probability for the cluster mass func-

tion with Eq. 4.4 on the parameters (Ωm,σ8,h, w) for the ΛCDM model.

Constraints on the parameters ΩDE = 1- Ωm and w are presented in Fig-

ure 4.10. This figure shows results from our analysis superimposed to

constraints obtained from Vikhlinin et al. (2009b).

In the ΛCDM scenario, we measure

w0 = −1.25± 0.19 ΩDE = 0.77± 0.06

combining zRDCS-1 and 400d data.

The cosmological information relevant for DE constraints lies in changes

of the comoving cluster number density. Such changes constrain the per-

turbations growth factor combined with the relative distances between

400d and zRDCS-1 samples. Errors on the ΩDE and especially w measure-

ments are dominated by uncertainties on the evolution of the observable-

mass relations, as we learned when we carried out forecast on DE EoS

parameters in the previous Chapter (see Section 3.6.1).

Using high-z clusters also slightly improves equation of state con-

strains for evolving w. We obtain parameter constraints on DE EoS pa-

rameters w0 and wa using the likelihood function computed on (Ωm,σ8,h,

w0, wa) that describe the standard DE model, by combining the zRDCS-1

and 400d sample. Constraints are weak by themselves, and adding the

zRDCS-1 information does not significantly improve the wa constraints.

With current data, clusters can be used in combinations with other cos-

mological datasets, like CMB and SNIa, and help in breaking the degen-
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Figure 4.8: Cluster mass functions for 3 redshift bins from the low and high

redshift samples from Vikhlinin et al. (2009a) and from the zRDCS-1 sample. The

errorbars show the Poisson uncertainties. Solid lines show the model predictions

for the ΛCDM model, with Ωm = 0.3.

eracy between the two DE EoS parameters (e.g. Vikhlinin et al., 2009b;

Mantz et al., 2010a).

4.4 High redshift massive cluster test

The analysis presented in the previous Section confirms the potential of

high redshift samples of galaxy clusters in constraining cosmological pa-

rameters. As explained in Section 1.5 we emphasize how important is

the contribution that even a single high redshift massive galaxy cluster

can provide in constraining the cosmological parameters and in falsify-

ing models.

Mullis et al. (2005) reported the discovery of a massive cluster at z ≃
1.4, XMMU-J2235.3, identified as part of the initial 11 sq.deg. of the XMM

Distant Cluster Project survey (XDCP; Fassbender et al., 2011), which

reaches a flux limit of 1× 10−14 erg s−1cm−2. Based on weak lensing

(Jee et al., 2009) and X-ray (Rosati et al., 2009) analyses, a robust 1σ lower
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Figure 4.9: Left panel: Constraints on the (Ωm, σ8) parameters in a flat ΛCDM

cosmology as obtained from the 400d sample (Vikhlinin et al., 2009b). The inner

solid region corresponds to the 68% CL intervals for one interesting parame-

ter, and the solid contour shows the one-parameter 95% CL region. The dashed

black contour shows how the inner solid confidence region is modified if the nor-

malization of the absolute cluster observable-mass relations is changed by +9%

(an estimate of the systematic errors). Figure from Vikhlinin et al. (2009b). Right

panel: Constraints at the 68 % (blue curve) and 95 % (magenta curve) confidence

level on the (Ωm, σ8) parameters for the ΛCDM model as obtained by combin-

ing information from the zRDCS-1 and the 400d sample from Vikhlinin et al.

(2009b).
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Figure 4.10: Constraints on the present day DE density parameter ΩDE and

constant equation of state parameter w, derived from cluster number density in

a spatially flat ΛCDM Universe. Left panel: Constraints at the 68% confidence

level provided the analysis of the 400d sample (Vikhlinin et al., 2009b). Right

panel: Constraints at the 68 (blue curve) and 95 (magenta curve) % confidence

level as obtained by combining information from the zRDCS-1 and the 400d

samples. For comparison constraints at the 68% confidence level provided the

analysis of the 400d sample (Vikhlinin et al., 2009b) (green curve) are shown.
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limit of 5× 1014 is obtained for the cluster virial mass.

This results triggered a number of studies on whether such a single

cluster is consistent with the expected ΛCDM cluster mass function. By

assuming a WMAP-5 cosmology, with σ8 = 0.81 and Ωm = 0.28, and us-

ing the mass function by Jenkins et al. (2001), Jee et al. (2009) found that

only ≃ 5× 10−3 of such massive clusters should be expected within the

survey area. Thus, they concluded that XMMU-J2235.3 is a rather un-

likely event in a standard cosmological scenario. Jimenez & Verde (2009)

argued that, for a fixed value of σ8 (= 0.77 in their analysis) the expected

number of such massive clusters can in fact be significantly enhanced in

the case of a positively skewed non-Gaussian distribution of primordial

perturbations.

Assuming a “local shape” for the non-Gaussian scenario, in Figure

4.11 we show the curves in the (σ8, fNL) plane corresponding to different

numbers of clusters expected at z > 1.4 within 11 sq.deg. and having

mass of at least 5 × 1014M⊙. Results are given for the reference non-

Gaussian mass function from LoVerde et al. (2008) (dot-dashed curves),

that we used for our forecasts (see Section 3.3.1), and for the mass func-

tion by Matarrese et al. (2000) (solid curves). For both mass functions, we

applied the correction to ∆c suggested by Grossi et al. (2009) (see Section

3.3.1). These two mass functions come from different approaches to ap-

proximate the exact result for small values of fNL as we discuss in Section

1.9. As expected, the difference between the two mass functions becomes

non negligible for fNL > 100 for the rare event of such a massive clus-

ter at z ≃ 1.4. For each model, the four curves, from right to left, are

for 0.05, 0.02, 0.01 and 0.005 such massive clusters found within the 11

sq.deg of survey area, respectively. For homogeneity with the analysis

carried out by Jee et al. (2009), we used here the Gaussian mass func-

tion by Jenkins et al. (2001). While fNL and σ8 are left free to vary, all

the other cosmological parameters are kept fixed at the fiducial values

reported in Section 3.3.3. The results shown in this plot confirm that a

positive skewness helps increasing the expected number of clusters. The

effect of non-Gaussianity is strongly degenerate with that of changing

σ8. For instance, increasing the expected number of clusters by about

a factor of ten for σ8 = 0.8 requires fNL values in excess of the range

allowed already at present by CMB (e.g., Komatsu et al., 2011, and ref-

erences therein) and Large Scale Structure (LSS) (Slosar et al., 2008) data.

On the other hand, the same boost in the cluster number can be achieved

by requiring fNL ≃ 100 and increasing σ8 to ≃ 0.87, again in tension
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with current CMB and LSS constraints. The conclusion of this analysis

is that for XMMU-J2235.3 not to be a very unlikely event, a degree of

non-Gaussianity in excess of the currently allowed CMB bounds is re-

quired, unless one wants to violate current constraints on σ8. Clearly, this

conclusion is based on assuming that errors in mass measurement are so

small not to affect the analysis. Also, more than a single detection of such

massive distant clusters are needed to draw firm conclusions. However,

this example further confirms the strong constraining power of even few

massive clusters at z > 1. In addition, since galaxy clusters probe much

smaller scales than the CMB, they offer a complementary approach to test

a possible scale-dependence of non-Gaussianity.

Having such precise measurement of the mass of the XMMU-J2235.3,

based on consistent values from both X-ray and WL analysis we also

computed the probability of finding a cluster like XMMU-J2235.3 accord-

ing to the ΛCDM model. We calculated the probability by using Eq.

4.4, and by considering errors in the calibration of the mass scaling re-

lations, and corrections due to the Malmquist Bias effect. As for the

mass and L-M parameters we use the reference values reported in Ta-

ble 4.2, while as for cosmological parameters we use the reference values

for the ΛCDM model reported in Section 3.3.3. We obtain a probabil-

ity of finding at least one such cluster at redshift z ≥ 1.4 with mass

M200,c ≥ 7.3× 1014M⊙ of 6.7 % within the survey area of 50 sq. deg. (the

updated area of the XDCP survey according to Fassbender et al., 2011).

In Figure 4.12 we show the probability of finding at least one cluster as

a function of mass and redshift within a survey area of 50 sq. deg. with

flux fX ≥ 1× 10−14 erg s−1 cm−2. Even a single cluster found in the “ten-

sion region” could falsify the reference model chosen for the analysis.

However, as we stressed in Section 1.5, in order to use massive clusters to

test the validity of cosmological models, we need to carefully calibrate the

mass observable scaling relations especially at such high redshift. Also a

detailed understanding of the survey sky coverage and of the effect of the

Malmquist bias in the calculation of the survey is needed. For example,

if we do not include the treatment of the Malmquist bias in the calcula-

tion of the survey volume, the probability of XMMU-J2235.3 decreases to

4.8 %. Moreover, a very good of understanding of the high mass end of

mass function is needed. As we showed in Figure 1.6 for masses higher

then 5× 1014 M⊙ in particular at high redshift, different mass function

prescriptions can predict quite different number of clusters because the

existing limited-volume simulations do not constrain this regime with
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sufficient accuracy.

The sensitivity of cluster mass function to the value of cosmological

parameters is also shown in Figure 4.12, where we plot the probability

of finding one or more clusters as a function of mass and redshift for a

different value of the constant DE EoS w. The green, blue and magenta

curves in Figure 4.12 are calculated for w = −1 while the cyan curve,

which represents the probability of 11%, corresponds to w = −0.8.

4.5 Conclusions

In this Chapter, we derived constraints on cosmological parameters from

current X-ray selected cluster samples. We analysed the evolution of

the cluster number density as defined by the the ROSAT Deep Clus-

ter Survey at redshift z > 0.8 (zRDCS-1), thus extending the analysis

of Vikhlinin et al. (2009b) who measured the cluster abundance in two

cluster samples at median redshifts z̃ = 0.05 and z̃ = 0.5, containing 49

and 37 clusters, respectively. The zRDCS-1 sample contains nine clusters,

selected in the RDCS catalogue, with flux fX ≥ 1× 1014 erg s−1 cm−2 in

the [0.5− 2]keV energy band and with redshift range from z = 0.805 to

z = 1.273, with median redshift z̃ = 0.865 (Rosati et al., 1995, 1998).

All the clusters belonging to the zRDCS-1 sample are spectroscopically

confirmed and the majority of them have a precise mass determination.

Specifically, extensive follow-up campaign have been carried out over the

last decade in order to measure the mass of these clusters with weak lens-

ing using HST/ACS observations and deep, high-quality X-ray pointings

with Chandra. Ass these clusters have a large number of spectroscopic

members observed with the VLT and Keck telescopes.

Both the analyses from our zRDCS-1 sample and of the 400d samples

have been carried out including the errors on the measurements of the

weak lensing and X-ray masses and the uncertainties in the calibration of

the observable-mass relation. Moreover in the calculation of the volume

sample the effect of the Malmquist bias that affect flux limited samples

has been included.

Our analysis was aimed at understanding whether results obtained on

cosmological parameters from clusters surveys at redshifts z̃ = 0.05 and

z̃ = 0.5 (Vikhlinin et al., 2009a) can be extended, and positively strength-

ener, to redshifts higher then 0.8 by combining the zRDCS-1 and 400d

samples. Thus we used the high-z tail of the RDCS sample to compute
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Figure 4.11: The number of clusters with mass larger that 5× 1014M⊙, found in

the redshift range 1.4 < z < 2 within the same survey area of 11 sq.deg. where

the XMMU-J2235.3 cluster has been originally detected (Mullis et al., 2005). non-

Gaussian mass function by LoVerde et al. (2008) (dot-dashed curves) and by

Matarrese et al. (2000) (solid curves) are shown. From right to left, magenta,

blue, red and green curves show the models on the σ8- fNL plane predicting 0.05,

0.02, 0.01 and 0.005 clusters within the survey area, respectively. All other cos-

mological parameters have been kept fixed to reference values indicate in Section

3.3.3.
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Figure 4.12: Probability of finding at least one cluster in a survey area of 50 sq.

deg. with flux fX ≥ 1× 10−14 erg s−1 cm−2 as a function of mass and redshift.

The curves correspond to the Poissonian probability of 0.1% (green curve), 1%

(blue curve), and 7% (magenta curve). All cosmological parameters have been

kept fixed to reference values indicated in Section 3.3.3. The value of mass and

L-M parameters are reported in Table 4.2. The cyan curve corresponds to the

P(N ≥ 1) = 11% for w = −0.8 instead of w = −1.



4.5. CONCLUSIONS 179

for the first time the mass function at z > 0.8.

Using the MCMC approach, we calculated constraints for the ΛCDM

and standard DE models. In the first case, we computed the likelihood on

4 four cosmological parameters (Ωm, σ8, w0 , h) while, for the standard DE

model, we add a further parameter, wa, that takes into account a possible

evolution of the DE EoS with redshift, according to Eq.3.1.

The main results of the study can be summarized as follows.

(1) Based on the RDCS sample alone, we determined the best fit values

of the parameters that describe the uncertainties in observable-mass

relation (see Eqs. 4.8 and 4.7). We see that a mild evolution with

redshift of both the bias and especially the scatter is preferred, as

expected for such high redshift clusters (see Table 4.2). In fact, as for

the X-ray analysis the assumption of the hydrostatic equilibrium is

not always fulfilled because clusters at such high redshift can be still

not completely relaxed. In case of WL analysis, projection effects

and uncertainties in the determination of the redshift of background

galaxies become more important at high redshift.

(2) Using the zRDCS-1 sample, we calculated the values of the parame-

ters that define the relation between the X-ray luminosity and mass

(Eqs. 4.13 and 4.11), that represents the most important source of

uncertainty in the calculation of the effective survey volume (Eq.

4.11). Our results are in agreement with those obtained by Vikhlinin et al.

(2009a). Based on these results, we conclude that the L-M relation

calibrated with clusters at relatively lower redshift is still valid for

clusters at z > 0.8. However, the scatter in the LX − M relation in

the zRDCS-1 sample is stronger because the relation is derived us-

ing a small number of clusters. Moreover, the Malmquist bias effects

become significant, as expected for the zRDCS-1 sample which lies

near the detection limit of the RDCS survey.

(3) Finally we computed the cluster mass function at median redshift

z̃ = 0.865. The observed evolution of the mass function as calculated

from zRDCS-1 sample is in agreement with prediction of ΛCDM at

high redshift.

(4) Calculating the likelihood from the zRDCS-1 sample and using con-

straints of cluster space density from the 400d sample as prior, we

derive constraints on ΩDE , w0 and wa. Our results are consistent
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with the results obtained with cluster surveys at lower redshifts (e.g.

Rozo et al., 2010; Vikhlinin et al., 2009b; Mantz et al., 2010a). The

best fit value obtained for the ΛCDM models are: w0 = 1.25± 0.19

ΩDE = 0.77± 0.06. These results slightly improve the constraints

from Vikhlinin et al. (2009b). In the case of the standard DE model,

the extension to z ∼ 1 with zRDCS-1 does not improve constraints

based on the larger sample at lower redshift. However, as shown

by Vikhlinin et al. (2009b), clusters can be important in breaking the

degeneracy between DE EoS parameters and their contribution be-

comes important when we combine cluster with other cosmological

probes.

Therefore, our analysis of the zRDCS-1 sample does not show any evi-

dence for population of massive clusters t z > 1, possibly in tension with

ΛCDM and standard quintessence models.

In order to further investigate this last points, we also performed a test

with a high redshift massive cluster. In fact, the detection of such high

objects have been used recently to quantify possible deviations from the

ΛCDM model (e.g. Mortonson et al., 2011). We calculated the probability

of finding at least one cluster with a given redshift and mass. In principle,

even a single cluster found in the “tension region” (see Figure 4.7) could

falsify a given cosmological model. A robust assessment of the likelihood

requires a detailed understanding of the survey sky coverage, including

the Malmquist bias, and a precise estimation of the cluster mass. We used

for our study the XMMU-J2235.3 cluster at z = 1.4 which has a robust

measurement of the mass from both the weak lensing (Jee et al., 2009)

and X-ray (Rosati et al., 2009) data. We obtained a probability of finding

at least one cluster at redshift z ≥ 1.4 with mass M200,c ≥ 7.3× 1014M⊙
of 6.7 % within the survey area of 50 sq. deg. (Fassbender et al., 2011),

according to the ΛCDM model. We showed how much such probability

sensitive to the values of the cosmological parameters. by changing the

DE EoS from w = −1 to w = −0.8, the value of the likelihood rise from

6.7 up to 11 %.

Our analysis further stresses the importance of having a well defined

measure of the clusters mass obtained with different methods in order to

minimize systematic effects. Moreover our study confirms the validity of

the ΛCDM model at redshift 0.8 < z < 1.3, within the limited statistic

provided by current data.



Conclusions

This Ph.D. Thesis is devoted to the study of galaxy clusters as probes to

derive cosmological constrains from future and current surveys.

Providing information on both the growth structure history and the

geometry of the Universe, galaxy clusters have been recognized as im-

portant in establishing the standard model of cosmology, with a Universe

dominated by Dark Matter (DM) and Dark Energy (DE).

Clusters are the most massive bound structures that emerge in the

cosmic web of Large-Scale Structure, and they arise from the collapse of

initial perturbations having a typical comoving scale of about 10 h−1 Mpc.

On scales larger than that, according to the standard model of cosmic

structure formation, gravitational dynamics dominated the Universe and

density perturbations can be treated in the linear approximation regime

(see Chapter 1). However, in order for clusters to be used as cosmolog-

ical tools, one needs to understand in detail the astrophysical processes

which determine cluster observational properties across the electromag-

netic spectrum, as we explain in Chapter 2.

Current cosmological constraints obtained from clusters have been

mainly derived from ROSAT- based samples, containing ∼ 100 objects at

z < 1 with detailed follow-up observations to infer cluster masses prox-

ies. However, current and forthcoming experiments in the optical band

(EUCLID), in the X-ray band (eROSITA ), and based on the SZ effect

(SPT, ACT, Planck), will increase by orders of magnitude the statistics

of detected clusters at high redshifts. Moreover, future high-sensitivity

wide-area telescopes, such as the proposed Wide Field X-ray Telescope

(WFXT), will measure mass proxies for a large amount of clusters (∼ 104)

out to z ∼ 1.5.

In this respect, it is worthy to study the cosmological constraining

power of such future cluster surveys. In the first part of our work (see

Chapter 3), we derived cosmological constrains from future cluster sur-

veys, dissecting the information provided by geometrical and growth
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tests, as they are included in the analysis of the number density and

the power spectrum of clusters. Moreover, we studied how much uncer-

tainties in the calibration of the mass-observable relation can affect the

constraints provided by clusters, and we explored how the optimization

of the survey strategy depends on the specific cosmological models that

we want to analyse.

To this aim, we developed an algorithm that derived forecast for con-

straints on cosmological parameters by using the Fisher Matrix approach

given the sky coverage of a specific cluster survey. Thanks to the large

number of detected clusters, future surveys, such as WFXT or EUCLID,

will contain so much information to allow one to constrain at the same

time cosmological parameters and those parameters related to the physi-

cal properties of clusters, by using the so-called self-calibration approach.

Exploring the DE component of the Universe is one of the most impor-

tant challenge of cosmology nowadays. The goal is to unveil the nature

of the energy component which dominates the overall dynamics of the

Universe at the present time. In this respect, we forecasted constraints

on parameters that define the standard parametrization of DE equation

of state (EoS, Eq. 3.1), as obtained from WFXT samples. Given the high

signal to noise of the data and the well defined selection function, it will

be possible to provide a complete characterization of mass and redshift

of objects detected with such telescope with X-ray data alone, without

resorting to time-consuming follow-up observations. The mission survey

strategy plans three survey configurations (see Table 3.1): the Wide (20000

sq.deg.), the Medium (3000 sq.deg.) and the Deep (100 sq.deg.) one.

We showed constraits on the DE EoS parameters in terms of the Figure

of Merit. Such quantity has been defined by DETF to provide a simple

tool to compare the performance of a given cosmological experiment with

respect to another, according to the standard DE model prescription.

We quantified the increase of the constraining power of WFXT surveys

by adding progressively information from the cluster number counts, the

mean cluster power spectrum analysis and the CMB prior from Planck

experiment. The number density of nearby galaxy clusters provides con-

straints on the amplitude of the power spectrum and its evolution is di-

rectly related to the growth rate of density perturbations and, thus, to the

amount of DE at a given redshift. The power spectrum provides direct in-

formation on the shape and amplitude of the underlying DM model and

the evolution of clustering properties is again sensitive to the growth rate

of perturbations. The slightly different directions of degeneracy of the
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constraints in the (w0,wa) parameters space from cluster number density

and power spectrum explains why the constraints substantially improve

when we consider the two contribution together rather then separately.

We verified that adding the CMB information improve the corresponding

constraints on the DE EoS, mostly as a consequence of the constraint pro-

vided by CMB data on the geometry of the Universe. In particular for the

first time we see that with a sufficient large survey area and a a high statis-

tics of clusters, Redshift Space Distortions carries important cosmological

information through the linear growth of perturbations, also in the case

of cluster surveys. Indeed, the DE FoM from the power spectrum analysis

of a large survey area increases by a factor 35 when including RSDs.

We extend the previous analysis computing forecasts for constraints

on deviations from Gaussian distribution of primordial density perturba-

tions, from the WFXT experiment. We expect that a positively skewed

distribution provides an enhanced probability of forming large collapsed

structures at high redshift, thereby changing the timing of structure for-

mation and the shape and evolution of the cluster mass function. A pecu-

liar feature of such models is that the halo bias acquires an extra scale de-

pendence due to primordial non-Gaussianity, thus we find that the power

spectrum provides strong constraints on the non-Gaussian fNL parame-

ter, which complement the stringent constraints on the power spectrum

normalization, σ8, from the number counts.

Therefore, we demonstrated that the combination of information from

the evolution of the cluster population and its clustering can significantly

enhance the constraining power of cluster surveys. However, a large

statistics of objects on a large redshift range is needed in order to car-

ried out the the power spectrum analysis.

A crucial aspect concerning the possibility of using clusters as cosmo-

logical tools regards the measurement of their mass and how this mass

can be related to observational quantities (i.e., X-ray temperature, velocity

dispersion of member galaxies, strong and weak lensing effects). In fact,

we showed that uncertainties on the calibration of the mass-observable

relation and its evolution with redshift can strongly affect the constrain-

ing power of clusters. We compared cosmological constraints obtained

by assuming different levels of prior knowledge of the parameters which

define the relation between cluster mass and X-ray observables. The FoM

of the DE EoS parameters increases by an order of magnitude when we

assume a precise and robust calibration of the mass-observable relation,

with respect to the case in which no such information is available. Pa-
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rameters whose constraints are entirely derived from growth tests such

as σ8 are the most strongly affected by the uncertainties on the mass-

observable relation. Interestingly, instead, the level of uncertainties on

the scaling relation does not affect directly constraints on the fNL param-

eter. However, due to the strong degeneracy between σ8 and fNL, in order

to detect deviation from the Gaussian paradigm a well defined calibration

of the scaling relation is necessary.

This analysis emphasizes that a full exploitation of the cosmological

information carried by future cluster surveys require not only large statis-

tics but also a robust measurement of mass proxies for a significant frac-

tion of the cluster sample, which ought to be derived from the same X-ray

survey data. This will be possible with future X-ray surveys only with an

adequate combination of survey area, sensitivity and angular resolution

that provide at least ∼ 103 net photon counts for the majority of cluster

included in the survey.

We demonstrated that the optimization of the survey strategy depends

on the class of cosmological models that one wants to constrain. As for

the DE EoS analysis we found that the Medium survey is the one carrying

most of the constraining power (Table (3.2)). Since this survey is expected

to yield the largest number of cluster out to z ∼ 1, it is the best suited

to trace the growth history of perturbation over a large redshift baseline,

as required to follow the redshift dependence of the DE EoS. On the con-

trary, our results showed that the Wide survey is the best suited to con-

strain deviations from non-Gaussian initial conditions, because, sampling

the long wavelength modes, it is possible to detect a scale-dependence of

the bias. With the Fisher Matrix algorithm, we also provided forecasts

for constraints on the DE EoS parameters for the cluster survey to be car-

ried out with the optical near-infrared EUCLID satellite, which has been

recently approved by the European Space Agency (ESA).

The techniques developed to forecast constraints from future survey,

presented in this Thesis, can be used to optimize the design of future

surveys of galaxy clusters in order to explore the nature of the “Dark

Sector” of the Universe. Moreover, models of modified gravity and of

clustered DE represent other broad classes of models for which clusters

can provide important constraints. This studies will require a multiwave-

length approach, combining the strengths of the available techniques for

finding clusters, calibrating their masses and obtaining low-scatter mass

proxies, by minimizing sistematic effects of each method. The power of

our method and the robustness of the predictions on constraints on cos-
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mological parameters is inextricably linked to the possibility of accurately

modelling the relations between mass and observables, and detailed hy-

drodynamical simulations, where both cluster mass and observable quan-

tities can be exactly computed, have to be further used to this aim (e.g.

Borgani & Kravtsov, 2009). Thus, simulations can be used to verify in de-

tail the validity of assumptions on which the mass estimators, applied to

observations, are based, like the assumption of hydrostatic equilibrium,

for which a violation in simulations at the 10− 20% level has been found.

Given the importance of having an extended redshift range over which

the evolution of perturbation growth is studied, and an accurate determi-

nation of masses for the clusters included in a survey, in the second part

of this Thesis (see Chapter 4), we analysed the evolution of the cluster

number density as defined by the the ROSAT Deep Cluster Survey at

redshift z > 0.8 (zRDCS-1). The zRDCS-1 sample contains nine clusters,

within the redshift range 0.8 < z < 1.3, all of them are spectroscopically

confirmed and the majority have a precise mass determination both from

WL and X-ray analysis. In our analysis, as prior information we used

constraints obtained by Vikhlinin et al. (2009b) from two cluster samples

with 49 and 37 clusters with median redshifts z̃ = 0.01 and z̃ = 0.5 re-

spectively.

In order to perform our analysis, we developed a fitting algorithm

based on the Montecarlo Markov-Chain (MCMC) and the maximum like-

lihood criterion, to calculate constraints on cosmological parameters from

sample of clusters with a well defined sky coverage and a precise mea-

sure of cluster masses. We computed for the first time the mass function

of clusters with median redshift z̃ = 0.865. Our analysis showed that

number density of clusters as observed in the high-z RDCS sample, is

in agreement with predictions of the ΛCDM model based on cluster ob-

servation at lower redshift. Moreover, combining the likelihood obtained

from the analysis of the zRDCS-1 with the prior probability provided by

the analysis performed by Vikhlinin et al. (2009b), we slightly improves

constraints on cosmological parameters that describe the ΛCDM model

as calculated by Vikhlinin et al. (2009b).

All the analyses that we performed in this Thesis stress that a precise

estimation of the cluster mass, is required. In particular with future high-

sensitive surveys of clusters, we will be able to calculate masses with

different method in order to minimize the systematics errors, and con-

sequently obtain important constraints on cosmological parameters. A

second important point is that we need to sample the growth of struc-



186 CHAPTER 4. CURRENT CONSTRAINTS FROM X-RAY CLUSTERS

ture history in a large redshift range in order to discriminate between the

ΛCDM and the quintessence cosmological models.

Moreover, it is necessary to further investigate the high mass end of

mass function as provided with simulations. The commonly used fit-

ting functions are simply extrapolated results in extremely massive clus-

ters regime, because the existing limited-volume simulations do not con-

strain the number density of such clusters accurately. Another potentially

important contribution from numerical simulation is the predicted mass

function specific for a given survey, which takes into account the various

aspects of selection limits and projection effects. The projection effect is

always a concern in the cosmological interpretation of extremely massive

clusters. Moreover, the theoretical calibration of the mass function for pre-

cision cosmology should include careful examination of subtle dependen-

cies of mass function on cosmological parameters (especially on the DE

EoS), effects of neutrinos with non-zero mass, effects of non-Gaussianity.

Finally, we need to understand the effects of baryonic physics on the mass

distribution of halos and related effects on the mass function, which can

be quite significant (Cui et al., 2011).



Appendix A

The Fisher Matrix statistical

technique

In order to define what the Fisher Matix information is, we have to give

some bases on the Bayesian statistics.

According to the Bayesian approach, we measure the mean (or the

variance) value of a given parameter by asking, which is the probabil-

ity that the mean (or the variance) takes a specific value, given a set of

observations and a set of assumptions (the prior). Commonly, the prior

is subdivided into assumptions that one asserts are true, and a model

equipped with parameters whose values one wishes to estimate.

Suppose that a data set consists of N real numbers x1, x2, ..., xN, which

is arranged in an N-dimensional vector x. Before collecting the data, we

think of x as a random variable with some probability distribution L(x|θ),
which depends in some known way on a vector of M model parameters

θ = (θ1, θ2, ..., θM).
We will let θ̃ denote the true parameter values and let θ refer to our

estimate of θ. Since θ is some function of the data vector x, it too is a

random variable. For it to be a good estimate, it has to be unbiased,

〈θ〉 = θ̃ and minimize the standard deviations

∆θα ≡
(

〈θ2α〉 − 〈θα〉2
)1/2

. (A.1)

The foundation of Bayesian statistics is Bayes’ theorem.

The Bayes’ Theorem states that the posterior probability P(θ|x, y) that
the parameters θ take on certain values, given the observational data x
and prior assumptions y, is proportional to the likelihood function, the

probability P(x|θ, y) ≡ L(x|θ, y) of the observations x given parameters
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θ and prior assumptions y, multiplied by the prior probability P(θ|y) of

the parameters θ given the prior assumptions y:

P(θ|x, y) = P(x|θ, y) P(θ|y)
P(x|y) . (A.2)

The probability P(x|y) is the evidence. For parameter estimation, the

evidence simply acts to normalise the probabilities,

P(x|y) =
∫

dθ P(x|θy) P(θ|y) (A.3)

and the relative probabilities of the parameters do not depend on it, so it

is often ignored and not even calculated.

However, the evidence does play an important role in model selection,

when more than one theoretical model is being considered, and one wants

to choose which model is most likely, whatever the parameters are.

The prior y may be the result of previous experiments, or may be a

theoretical prior, in the absence of any data. In such cases, it is common

to adopt the principle of indifference and assume that all values of the

parameter(s) is (are) equally likely, and take p(θ|y) = constant. This is

referred to as a flat prior.

If we have some more information, from another experiment, then

we can use Bayes’ theorem to update our estimate of the probabilities

associated with each parameter. It is possible to show that adding the

results of a new experiment, x′, to the probability of the parameters is the

same as doing the two experiments first, and then seeing how they both

affect the probability of the parameters:

P(θ|x′xy) = P(θ|xy) P(x′|θxy)
P(x′|xy) =

P(θ|y) P(x′x|θy)
P(x′x|y) . (A.4)

Let us assume to have a posterior probability distribution, which is

single-peaked and that the prior is flat, so the posterior is proportional

to the likelihood. In this case, close to the peak, a Taylor expansion of

the log likelihood implies that locally ln L is a multivariate Gaussian in

parameter space:

ln L(x|θ) = ln L(x|θ0) +
1

2
(θα − θ̃α)

∂2 ln L

∂θα∂θβ
(θβ − θ̃β) + . . . (A.5)

or

L(x|θ) = L(x|θ̃) exp
[

−1

2
(θα − θ̃α)Hαβ(θβ − θ̃β)

]

. (A.6)
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The Hessian matrix Hαβ ≡ − ∂2 ln L
∂θα∂θβ

controls whether the estimates of θα

and θβ are correlated or not. If it is diagonal, the estimates are uncorre-

lated. Note that this is a statement about estimates of the quantities, not

the quantities themselves, which may be entirely independent, but if they

have a similar effect on the data, their estimates may be correlated.

We can now define the Fisher information matrix Fαβ of a set of pa-

rameters θ to be minus the expectation value of the second derivative of

the log-likelihood function with respect to the parameters:

Fαβ ≡ −
〈

∂2 ln L

∂θα∂θβ

〉

. (A.7)

Expectation value here means averaged over an ensemble of observational

data x predicted by the likelihood function

〈t〉 ≡
∫

t L(x|θ)dx . (A.8)

Since the likelihood L is multiplicative over statistically independent sets

of observations, it follows that the Fisher matrix is additive over statisti-

cally independent observations.

Marginalising over a gaussian likelihood The marginal distribution of

θ1 is obtained by integrating over the other parameters:

P(θ1) =
∫

dθ2 . . . dθNP(θ) . (A.9)

Often one sees marginal distributions of all parameters in pairs, in this

case two variables are left out of the integration and the error on these

two parameters is represent by an ellipse where one has to specify what

contour confidence level to plot. In case of a multivariate Gaussian likeli-

hood the marginal error on parameter θα is

σα =
√

(H−1)αα =
√

(F−1)αα. (A.10)
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