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ABSTRACT
We present a new algorithm (PINOCCHIO: pinpointing orbit-crossing collapsed hierarchical objects)

to accurately predict the formation and evolution of individual dark matter halos in a given realization
of an initial linear density Ðeld. Compared with the halo population formed in a large (3603 particles)
collisionless simulation of a cold dark matter (CDM) universe, our method is able to predict to better
than 10% statistical quantities such as the mass function, two-point correlation function, and progenitor
mass function of the halos. Masses of individual halos are estimated accurately as well, with errors typi-
cally of order 30% in the mass range well resolved by the numerical simulation. These results show that
the hierarchical formation of dark matter halos can be accurately predicted using local approximations
to the dynamics when the correlations in the initial density Ðeld are properly taken into account. The
approach allows one to automatically generate a large ensemble of accurate merging histories of halos
with complete knowledge of their spatial distribution. The construction of the full merger tree for a 2563
realization requires a few hours of CPU time on a personal computer, orders of magnitude faster than
the corresponding N-body simulation would take, and does not need any extensive postprocess-
ing. The technique can be efficiently used, for instance, for generating the input for galaxy formation
modeling.
Subject headings : cosmology : theory È dark matter È galaxies : clusters : general È

galaxies : formation È galaxies : halos

1. INTRODUCTION

In currently favored, dark matter dominated cosmo-
logical models, initially small density Ñuctuations are ampli-
Ðed by gravity and eventually condense out of the Hubble
expansion to form gravitationally-bound systems at a
density contrast of dark matter halos (e.g., PeeblesZ200
1993). The properties of the halo population are of funda-
mental importance for understanding galaxy formation and
evolution. Indeed, galaxies are thought to form when
baryons fall into such dark matter halos and are shocked to
sufficiently high temperatures and densities that the gas can
cool radiatively to form stars (Rees & Ostriker 1977 ; White
& Rees 1978).

The formation of halos can be studied using numerical
simulations which usually evolve a set of equal mass par-
ticles that represent the dark matter in a periodic simulation
box (e.g., Efstathiou et al. 1985). A popular way of identify-
ing ““ halos ÏÏ in such calculations is the friends-of-friends
(FOF) algorithm, which links particles within a fraction b of
the mean interparticle spacing into one halo, at a density
contrast of Other halo identiÐcation algorithmsZ 1/b3.
generally give similar results. Jenkins et al. (2001) combined
the results from simulations with a variety of box sizes to
obtain the mass function n(M) of FOF halos over a large
dynamic range.

Analytical descriptions of the halo formation process
were pioneered by Press & Schechter (1974, hereafter PS)
and were recently reviewed by Monaco (1998). Although
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the PS mass function and its extensions (the so-called excur-
sion set approach, Bond et al. 1991) Ðt the numerical FOF
mass function reasonably well (e.g., Efstathiou et al. 1988),
there are real discrepancies both at large and small masses
where PS respectively under- and overpredicts halo
numbers (e.g., Governato et al. 1999 ; Jenkins et al. 2001 ;
Bode et al. 2001). Similar discrepancies are found when
reproducing the mass function of the progenitors of halos of
given mass (Sheth & Lemson 1999 ; Somerville et al. 2000).
In addition, Bond et al. (1991) and White (1996) demon-
strated that the PS approach achieves a very poor agree-
ment on an object-by-object basis when compared to
simulations (but see Sheth, Mo, & Tormen 2001 for a di†er-
ent view). Analytic approaches based on the peaks of the
initial density Ðelds did not achieve a better agreement with
simulations (Katz, Quinn, & Gelb 1993). Intermediate
between simulations and analytical techniques are per-
turbative approaches that describe the growth of halos
in a given numerical realization of a linear density Ðeld,
such as the truncated ZelÏdovich (1970) approximation
(Borgani, Coles, & Moscardini 1994), the peak-patch
algorithm (Bond & Myers 1996a, 1996b), and the merging
cell model (Rodriguez & Thomas 1996 ; Lanzoni, Mamon,
& Guiderdoni 2000).

In this paper we present a new algorithm to compute the
formation and evolution of dark matter halos in a given
linear density Ðeld. A one-dimensional version of this algo-
rithm was given by Monaco & Murante (2000). In common
with the other perturbative approaches, we combine a local
description of the dynamics in order to identify collapsed
halos with Lagrangian perturbation theory to displace the
halos to their Ðnal positions. We demonstrate that the algo-
rithm leads to an accurate description of the detailed clus-
tering and merger history of halos while requiring several
orders of magnitude less computer time and postsimulation
analysis than the corresponding full-blown numerical simu-

8



PREDICTING FORMATION OF DARK MATTER HALOS 9

lation. In addition, the successful reproduction of the
merger history demonstrates that we have identiÐed the key
processes that govern halo formation, and that these can be
described with a perturbative approach.

We follow a two-step procedure that mimics the hierar-
chical build-up of halos through accretion and merging.
The Ðrst step identiÐes orbit-crossing (OC) as the instant at
which a mass element undergoes collapse. We compute OC
numerically by applying local ellipsoidal collapse approx-
imation to the full Lagrangian perturbative expansion
(Bond & Myers 1996a ; Monaco 1995, 1997). This part is the
more computationally expensive, requiring several hours of
computer time for a 2563 realization. The second step
groups the collapsed particles into disjoint halos, using an
algorithm similar to that used to identify halos in N-body
simulations. Basically, a particle accretes onto a halo if it is
sufficiently close to it at its collapse instant. We use
Lagrangian perturbation theory (LPT, Catelan 1995 ;
Bouchet 1996 ; Buchert 1996) to compute the positions of
halos and particles. Seed halos are local maxima of the
collapse redshift. This second step automatically determines
the full merger history of halos and requires negligible com-
puter time. Compared to simulations, the Ðrst step deter-
mines when a simulation particle enters a high-density
region, whereas the second identiÐes the halos.

Since our method describes, in the linear density Ðeld, the
hierarchical build-up of objects that have undergone OC,
we refer to it as PINOCCHIO: pinpointing orbit-crossed
collapsed hierarchical objects. In the next section we
describe the algorithm in more detail. In ° 3 we compare its
predictions with those from simulations and discuss pos-
sible applications of the method. Section 4 gives the conclu-
sions. Technical details and resolution issues are addressed
in forthcoming papers (Monaco, Theuns, & Ta†oni 2001 ;
Ta†oni, Monaco, & Theuns 2001).

2. THE ALGORITHM

2.1. Orbit Crossing
Consider a random realization of a density Ðeld, o(q),

where q denotes Lagrangian (initial) coordinates, and let
/(q) be the corresponding peculiar potential. Both Ðelds can
be smoothed by convolving them with a Gaussian with
FWHM R ; we denote them as o(q, R) and /(q, R), respec-
tively. The Ðrst derivative of the potential, describesL

qi
/,

the motion of the particle in the ZelÏdovich (1970) approx-
imation, and the shear tensor, can be used to give aL

qi
L
qj

/,
description of the deformation of the mass element based on
ellipsoidal collapse (Bond & Myers 1996a ; Monaco 1995,
1997). In our context, ellipsoidal collapse is a convenient
truncation of LPT (Monaco 1997).

For a given smoothing radius R, the density of a mass
element will become inÐnite as soon as at least one of the
ellipsoidÏs axes reaches zero size, at which point the relation
x(q) becomes multivalued and the Jacobian of the trans-
formation q ] x, J \ det o Lx/Lq o\ 0. This is the deÐnition
of OC. We argue that after this instant nonlinear pro-t

c
,

cesses will become important and hence further predictions
of what happens to the mass element can not be safely made
using LPT. However, as the density of the mass element is
already very high, we regard it as a candidate for the build-
ing up of a collapsed halo at time A di†erent deÐnitiont

c
(R).

of collapse was used, e.g., by Audit, Teyssier, & Alimi (1997),
Lee & Shandarin (1998), and Sheth & Tormen (1999).

In practice we generate the density Ðeld o on a cubic grid.
In our description, mass elements (or ““ particles ÏÏ) then cor-
respond to the grid vertices q. The potential / and its deriv-
atives are computed from o using fast Fourier transforms.
We typically use D20 logarithmically spaced smoothing
radii. Applying local ellipsoidal collapse to each particle, we
obtain the collapse redshift on each smoothing scale, and
we record for each particle the highest collapse redshift z

c
,

the corresponding smoothing scale and the ZelÏdovichR
c
,

(1970) estimates for the peculiar velocity ¿
c
(R

c
)P+/(q, R

c
)

on that smoothing scale. Note that at this stage we make no
prediction of the mass of the collapsed halo that the particle
accreted onto.

In fact, the collapsed mass element will not necessarily
have accreted onto any halo, but may instead have become
part of a Ðlament or sheet (collectively referred to as
““ Ðlaments ÏÏ hereafter), since these have undergone OC as
well. These structures trace the moderate over-densities that
connect the much higher density collapsed halos in simula-
tions. The next subsection describes how the OC region is
divided into collapsed halos and OC Ðlaments.

2.2. Fragmentation
The grouping of OC particles into halos mimics the hier-

archical formation of objects, and also the way in which
halo Ðnders identify collapsed objects in simulations. We
begin by sorting particles according to decreasing collapse
redshift, and starting from the highest we decide thez

c
, z

cfate of the collapsed particle, working our way down,
forward in time to the last particle to collapse.

BrieÑy, at the instant the particle is deemed to collapse,
we decide which halo, if any, it accreted onto. The candidate
halos are those that already contain one Lagrangian neigh-
bor of the particle.6 The particle will accrete onto the halo if
it is sufficiently close to it at the collapse time, mimicking
the construction of FOF halos. We use the ZelÏdovich
velocities as deÐned earlier to compute the distance, at¿

cthe collapse time, between the particle and the candidate
halo. If a particle has more than one candidate halo, we also
check whether these halos should merge, using a similar
merger criterion. Notice that in this way halos are by con-
struction connected regions in Lagrangian space.

More in detail, we apply the following rules for accretion
and merging. (Lengths are in units of the grid spacing ;

is the ““ radius ÏÏ of a halo of M particles.)R
M

\ M1@3
1. Seed halosÈLocal maxima of the collapse redshift z

care seeds for a new halo.
2. AccretionÈA collapsing particle (not a local

maximum) accretes onto a candidate halo (i.e., containing
one of its Lagrangian neighbors) if the distance d, at the
collapse time between particle and halo center-of-mass is

The quantity is a parameter of order unity,d ¹ f
a
R

M
. f

aanalogous to the linking-length parameter used to identify
FOF halos. If the particle is able to accrete onto two (or
more) halos, we assign it to the one for which is thed/R

Msmallest.
3. MergingÈIf the particle has more than one candidate

halo, then these halos are merged if their mutual distance d,
again at the particleÏs collapse time, is whered ¹ f

m
R

M
, R

Mrefers to the larger halo and is again a parameter of orderf
m

6 On the initial grid q of Lagrangian positions, the six particles nearest
to a given particle are its Lagrangian neighbors.
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unity. Since we only consider six Lagrangian neighbors, up
to six halos may merge at a given time, although binary and
ternary mergers are of course much more frequent.

4. FilamentsÈWith these rules for accretion and
merging, some collapsing particles do not accrete onto a
halo at their collapse time. Since these particles tend to
occur in the mildly over-dense regions that connect the
halos (visible as a Ðlamentary network between halos in
simulations), we assign them to a ““ Ðlaments ÏÏ group. In
N-body simulations, some particles accrete onto a halo
directly from this Ðlamentary network, without passing
through a collapsed halo Ðrst. In order to account for this,
we check the Lagrangian neighbors of a particle that acc-
retes onto a halo according to the accretion condition (2). If
any of these neighbors already belong to the Ðlaments
group, then they also accrete onto that halo. (So up to Ðve
additional particles may accrete onto the halo, if their
common Lagrangian neighbor satisÐes condition [2]).

When the groups are very small, is comparable to theR
Mgrid spacing, and the ZelÏdovich displacements are often not

sufficiently accurate for the accretion or merging condition
to be fulÐlled. This resolution e†ect results in producing too
few small halos at high redshift. To remedy this we improve
the accretion condition to and similarly ford \ f

a
R

M
] f

r
,

merging. Our algorithm thus contains three parameters ( f
a
,

and which need to be calibrated using the FOF massf
m
, f

r
)

function as determined from a simulation, and which have
obvious physical interpretations in terms of accretion,
merging and resolution e†ects. Optimal values are f

a
\ 0.18,

and These values were obtained by com-f
m

\ 0.35, f
r
\ 0.7.

paring the PINOCCHIO mass function with those of
several simulations, including the standard SCDM one dis-
cussed below, a "CDM simulation ()

m
\ 0.3, )" \ 0.7,

h \ 0.7) run with the same simulation code and boxp8\ 1,
size (500 h~1 Mpc) and another "CDM simulation ()" \
0.7, h \ 0.65) with di†erent resolutions)

m
\ 0.3, p8\ 0.9,

(1283 and 2563 particles) in a smaller box of 100 h~1 Mpc,
evolved with the P3M HYDRA code (Couchman 1991).
The agreement between PINOCCHIO and these other
simulations is as good as the comparison with the SCDM
simulation described in the next section ; the best Ðt param-
eters are found to agree within D0.01. However, at smaller
and more nonlinear scales, more subtle resolution e†ects
appear for which corrections can be made. These details will
be discussed in the forthcoming paper Monaco et al. (2001).

3. RESULTS

We have applied PINOCCHIO to the initial conditions
of a simulation by Governato et al (1999). This large-
volume, dissipationless simulation uses 3603 dark matter
particles and was evolved using the PKDGRAV tree code
(comoving box size 500 h~1 Mpc, matter density )

m
\ 1,

Hubble constant km s~1 Mpc~1, standard CDMH0 \ 50
spectrum with Halos have been identiÐed at severalp8\ 1).
output times using a standard FOF algorithm with linking
length b \ 0.2. PINOCCHIO is fast : Resampling the initial
conditions onto a 2563 grid, the Ðrst stage of computing
orbit-crossing requires D 6 hours of CPU time ; the second
step of identifying the halos takes just a few minutes.
(Timings refer to a Pentium III 450 MHz personal com-
puter. Memory requirement in this case amounts to D512
megabytes of RAM). These timings should be contrasted
with the several hundreds of hours on 256 nodes of a T3E

Cray supercomputer required to perform the original simu-
lation. Moreover, PINOCCHIO immediately outputs the
merger tree of each halo, which should be contrasted to the
complicated and expensive postprocessing necessary to
extract merger trees from a simulation.

One way to understand the large speed-up between an
N-body simulation and PINOCCHIO is that most of the
CPU time used in the N-body simulation is spent inte-
grating the orbits for particles already inside a halo. These
particles undergo large accelerations as they orbit inside the
halo, and hence may require thousands of time steps in
order for their orbits to be integrated accurately. PINOC-
CHIO, on the other hand, completely ignores particles once
they are inside a halo and so can use far fewer steps per
particle to perform the whole simulation, since it only needs
to compute the particleÏs orbit before it enters any high-
density region. Obviously, all information on the internal
structure of the halo is lost in the process, but it is well
known that several millions of particles are required to get
the internal structure correct. (See the controversy about
the slope of halo proÐles as determined using high-
resolution collisionless simulations, e.g., Ghingha et al.
2000.) In the following, we demonstrate that PINOCCHIO
is indeed able to predict the merging and clustering proper-
ties of halos very accurately.

PINOCCHIO reproduces the mass function Mn(M)
(number of objects per unit volume and unit lnM) to better
than 10% at all redshifts (Fig. 1) in the mass range in which
halos have at least D30 particles and Poisson error bars are
small. To make this more evident, we plot in the lower panel
of Figure 1 the residuals with respect to the z\ 0 FOF
mass function. This level of accuracy improves over the Ðt
proposed by Sheth & Tormen (1999). The PS mass function,
which over- (under-) predicts the number of low- (high-)
mass objects, is shown for comparison as well.

The good agreement between halo masses is not just sta-
tistical in nature. We have plotted in Figure 2 the masses of
the halos that a particle is assigned to, for both PINOC-
CHIO and FOF halos, for a random subset of particles
drawn from the initial conditions. The correlation between
PINOCCHIO and FOF masses is extremely tight and is
dramatically better than PS (compare with Fig. 2 in Sheth
et al. 2001), and also improves over peak-patch (Bond &
Myers 1996b, their Fig. 11).

Figure 2 contains outliers which correspond to particles
that are assigned to a di†erent halo (or are not assigned to a
halo at all) by PINOCCHIO than by the simulation (or vice
versa). We have investigated in detail the typical overlap in
the initial conditions between simulated halos and those
found by PINOCCHIO. Since PINOCCHIO refers to the
same initial conditions as the simulation, we can determine
the fraction of Lagrangian volume of a given halo identi-VPÐed by PINOCCHIO that overlaps the Lagrangian volume

of a FOF halo. In general, for any FOF halo, theVFOFvolume may overlap with the Lagrangian volumes ofVFOFseveral PINOCCHIO halos (and vice versa). For example,
if two PINOCCHIO halos fail to merge, whereas the corre-
sponding FOF halos do merge, then the volume mayVFOFbe broken up into two PINOCCHIO volumes WeVP.choose to pair up two halos between the two catalogs if
their Lagrangian volumes overlap to better than 30%.
Paired-up halos are in addition called ““ cleanly assigned ÏÏ if
the intersection of with is larger than for any otherVFOF VPFOF halo, and vice versa. Paired-up halos that are not
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FIG. 1.ÈComparison of mass function Mn(M) in a standard CDM model Top panel : Simulated mass function for FOF selected halos (solid lines()
m

\ 1).
with Poissonian error bars), PINOCCHIO mass function ( Ðlled circles), the Ðt by Sheth & Tormen (short dashed lines), and PS function (long dashed lines), at
redshifts z\ 0, 0.43, 1.13, and 1.86 (higher redshift curves are o†set by 0.1 dex both vertically and horizontally for improved clarity). Vertical lines show limits
corresponding to simulation halos with 10, 50, 100, 500, and 1000 particles (2563 resampling). Bottom panel : Di†erence between simulated mass function and
PINOCCHIO ( Ðlled dots), Sheth & Tormen Ðt (short dashed line), and PS (long dashed line) at z\ 0.

FIG. 2.ÈPredicted halo mass against FOF halo mass for a subset of the
particles of Governato et al. (1999) simulation at redshift z\ 0.)

m
\ 1

The PINOCCHIO masses are highly correlated with the FOF masses.
Points which have not collapsed have been arbitrarily assigned a mass of
1013M

_
.

cleanly assigned are called ““ split.ÏÏ Denoting the fraction of
halos that are cleanly assigned and the fraction that are split
by and respectively, then the fraction of halos thatfcl fsplit,are not paired up is obviously 1 [ fcl[ fsplit.In Figure 3, we show and as a function of halofcl fsplitmass for several redshifts. For sufficiently massive halos

(corresponding to 40 particles),M º 1014M
_

fclº 0.8,
showing that most FOF halos can be unambiguously
associated with a corresponding PINOCCHIO halo, while
the fraction of FOF halos split in two or more PINOC-
CHIO halos is small. The fraction of FOF1 [ fcl[ fsplithalos that have no corresponding PINOCCHIO halo is
very small as well, ranging from for the most massive[1%
halos, to D15% for small halos with D40 particles. The
latter limit is close to the minimum number needed to cor-
rectly numerically simulate the formation of a halo, given
an initial density Ðeld. For cleanly assigned halos, the
bottom panel in the Ðgure shows the fractional overlap fovof the respective Lagrangian volumes. A typical value for
well-resolved halos is indicating that the massfovD 0.7,
errors are usually smaller than 30%. This is made more
clear in Figure 4, which compares the FOF with the PIN-
OCCHIO masses for cleanly assigned halo pairs. The corre-
lation is very tight. The level of agreement between
PINOCCHIO and simulations is only weakly dependent
on redshift.
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FIG. 3.ÈStatistics of halo overlap between PINOCCHIO and FOF
objects for halos at z\ 0 (solid lines), z\ 0.43 (dotted lines), z\ 1.13 (short
dashed lines), and z\ 1.86 (long dashed lines). Upper panel : Fraction offcl““ cleanly assigned ÏÏ halo pairs between the two catalogs, as a function of
mass. Middle panel : fraction of FOF halos that are split in two PIN-fsplitOCCHIO halos. L ower panel : Average overlap in Lagrangian space, fov,for cleanly paired-up halos. (See text for deÐnitions of and As infcl fsplit .)Figure 1, vertical lines show limits corresponding to simulation halos with
10, 50, 100, 500, and 1000 particles (2563 resampling).

Since PINOCCHIO halos are very similar in detail to
their corresponding FOF halos, their merging history and
clustering properties can be expected to be very similar as
well. The conditional mass function n(M, (thez oM0, z0)number density of objects of mass M at redshift z that are
merged in halos of mass at the later redshift is shownM0 z0)in Figure 5. The PS prediction, computed following Bond et
al. (1991 ; see also Bower 1991 ; Lacey & Cole 1993) is also
shown. Also in this case the agreement between PINOC-
CHIO and the simulation is very good, making an improve-
ment with respect to PS and demonstrating that
PINOCCHIO halos undergo a very similar merging history
as do FOF halos.

FIG. 4.ÈPINOCCHIO vs. FOF halo masses for objects that were
cleanly assigned between the two respective catalogs. Note that each dot
corresponds to a halo pair, which contrasts with Figure 2, where each dot
refers to a random point in the initial conditions.

Finally, we compare in Figure 6 the two-point corre-
lation function m(r) of halos as a function of mass and red-
shift. The agreement with the simulations is again very
good. In particular, the high clustering amplitude of
massive halos at early times is well-reproduced, and the
correlation length is recovered to within 10% or better,r0thus improving the PS-like estimate of Sheth et al. (2001)
and allowing easy discrimination between di†erent cosmo-
logical models (Colberg et al. 2000). The quality of this

FIG. 5.ÈConditional mass function of halos with mass M0\ 5
at redshift z\ 0, at the earlier redshifts 1.13 and 1.86 as indi-] 1015 M

_cated. Solid lines with Poissonian error bars are for the simulation, Ðlled
circles correspond to the PINOCCHIO prediction, long dashed lines are
the conditional mass function from the PS theory (Bower 1991). The higher
redshift results have been o†set vertically by 1 dex for clarity. The PINOC-
CHIO mass function follows the simulations signiÐcantly better than the
PS one.
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FIG. 6.ÈCorrelation functions for halos within a given mass range as a
function of comoving separation R for the two redshifts indicated in the
panels. Symbols refer to FOF selected halos, lines to PINOCCHIO halos.
Mass ranges are ( Ðlled squares and full lines)1014¹ log M/M

_
¹ 1014.5

and (open squares and dashed lines respectively). Lowerlog M/M
_

º 1014.5
mass curves have been o†set vertically by 1 dex for clarity. The number of
contributing halos for the lower mass range is B 41 ]103 and 12 ]103
(for increasing redshifts), for the higher mass range 19]103 and 0.5]103.

agreement suggests that halo positions are well-estimated
by PINOCCHIO; we Ðnd that the one[dimensional rms
error on the Ðnal positions is D 0.8 h~1 Mpc (smaller than
the grid spacing), while velocities are recovered with a one-
dimensional rms of D150 km s~1.

4. CONCLUSIONS

We have demonstrated that PINOCCHIO is able to
accurately describe the evolution of clustering of halos as a
function of mass. Therefore, when combined with semi-
analytical models for galaxy formation (White & Frenk
1991 ; Kau†mann, White, & Guiderdoni 1993 ; Cole et al
1994 ; Somerville & Primack 1999), PINOCCHIO can be
used to reliably generate mock galaxy catalogs, with the
correct evolution of galaxy clustering built in, while
requiring orders of magnitude less computer time than
numerical simulations. Easy and accurate production of
large halo catalogues is invaluable for interpreting data and
estimating errors from galaxy or galaxy cluster surveys ; for
example, when studying galaxy bias (Diaferio et al. 1999 ;
Benson et al. 2000), estimating power spectra (e.g., Efsta-
thiou & Moody 2001), determining shear from weak lensing
measurements (van Waerbeke et al. 1999 ; Wittman et al.
2000 ; Bacon, Refregier, & Ellis 200 ; Kaiser, Wilson, &
Luppino 2000), or studying intrinsic galaxy alignments
(Crittenden et al. 2001 ; Brown et al. 2000).

A more detailed and technical account of the code, suit-
able for those who wish to use it, will be given in a forth-
coming paper (Monaco et al. 2001), while the ability of
predicting halo merger histories beyond the progenitor
mass function will be presented by Ta†oni et al. (2001). A
public version of PINOCCHIO is available.7

We thank Jasjeet Bagla, Stefano Borgani, Anatoly Klipin,
Barbara Lanzoni, Sergei Shandarin, and Ravi Sheth for
many discussions. N-body simulations were run at the
ARSC and Pittsburg supercomputing centers. P. M.
acknowledges support from MURST. T. T. acknowledges
support from the ““ Formation and Evolution of Galaxies ÏÏ
network set up by the European Commission under con-
tract ERB FMRX-CT96086 of its TMR program, and from
PPARC for the award of postdoctoral fellowship. Research
conducted in cooperation with Silicon Graphics/Cray
Research utilizing the Origin 2000 supercomputer at
DAMTP, Cambridge.

7 A public version of PINOCCHIO is available at the site http ://
www.daut.univ.trieste.it/pinocchio.
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