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Abstract

This thesis aims to review the cosmological mass function problem, both from the theoret-

ical and the observational point of view, and to present a new mass function theory, based

on realistic approximations for the dynamics of gravitational collapse. Chapter 1 gives a

general introduction on gravitational dynamics in cosmological models. Chapter 2 gives a

complete review of the mass function theory. Chapters 3 and 4 present the “dynamical”

mass function theory, based on truncated Lagrangian dynamics and on the excursion set

approach. Chapter 5 reviews the observational state-of-the-art and the main applications of

the mass function theories described before. Finally, Chapter 6 gives conclusions and future

prospects.
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Chapter 0

Introduction

Cosmological models are designed to predict the essential features of observed cosmological structures. Such
models must then predict the formation of structures characterized by densities much larger than the cosmo-
logical background density; these structures can correspond to protogalaxies, galaxies, groups and clusters
of galaxies. High-density structures are more or less isolated in many if not most cases, so that it is possible
to define a mass associated to them (this is not the case for the large-scale network of galaxy walls and
filaments, characterized by low density contrasts). The mass distribution of such objects, i.e. the number of
objects per unit volume and unit mass interval, is commonly called mass function or multiplicity function;
it will be referred to as MF throughout the text. The MF of cosmological structures is the main concern of
this thesis.

The determination of the cosmological MF is a difficult, not fully solved problem, both from the theoretical
and the observational point of view. An analytical exact prediction of the MF is hampered, even in the
simplest cosmological models, by the fact that highly non-linear gravitational dynamics is involved in the
formation of high density objects; it is well known that the gravitational collapse problem has never been
exactly solved, except in the case of simple symmetries (spherical planar). Large N-body simulations can
be used to determine the MF of simulated halos; however such simulations, besides being time-expensive
and limited in resolution, provide a numerical estimate of the final solution of the problem without directly
shedding light on the difficult problem of gravitational collapse. Approximate analytical arguments, while
being of limited validity, can provide useful and fully-understood solutions, which can then be compared to
the results of N-body simulations.

From the observational point of view, the masses of cosmological structures can now be estimated in
a number of indirect ways: for instance, galaxy masses up to a few optical radii can be inferred from the
velocity field of stars or from the motion of satellite galaxies, while galaxy cluster masses can be estimated
through the velocity dispersion of galaxies, or through their X-ray emission, or through gravitational lensing.
These method have led or will lead in the near future to the observational determination of the MF of these
structures.

The first theoretical attempt to determine the MF was made in the seminal paper by Press & Schechter
(1974). Their procedure was based on an extrapolation of the linear regime of perturbation growth to the
collapse regime. Their result completely ignores many of the difficulties of gravitational collapse, but it is
very simple, and, as it has been shown later by means of N-body simulations, it predicts the right number
of dark-matter halos. Between 1988 and 1992, the theoretical MF problem witnessed a burst of effort from
many authors, who proposed many extensions or alternative procedures to overcome the problems of the PS
MF. Since 1995, the MF problem is witnessing a new wave of interest. The problem is not still “solved”,
as remarked before, but a number of promising approaches have been developed. On the other hand, the
PS formula still provides, according to most authors, a simple way to effectively predict the MF for many
practical uses.

The MF problem deserves further investigation: a realistic MF theory is the first step in the modeling
of observable cosmological objects. Reliable observational MFs, to be compared to theoretical prediction
for different cosmological models, will be available in the near future. Besides, a careful study of the MF
problem, conducted through analytical arguments and detailed comparisons to numerical simulations, can
help to improve our understanding of the gravitational highly non-linear regime.

This thesis is organized as follows. Chapter 1 contains a cosmological introduction; it is focused on the
problem of gravitational dynamics in cosmology, which is addressed both qualitatively (§1.1) and quantita-
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tively (§1.2), through the introduction of the mathematical tools which will be exploited in the following
Chapters. The problem of structure formation is schematically discussed in §1.3.

Chapter 2 contains an extensive review of the theoretical MF problem. The Press & Schechter proce-
dure is explained in §2.1, where its main features, problems and merits are discussed. §2.2 describes the
comparison of the analytical MF with the results of numerical simulations. The remaining sections describe
the theoretical works which have tried to extend the validity of the original Press & Schechter work, or have
proposed alternative procedures.

Chapters 3 and 4 describe the building of an MF theory, fully based on realistic approximations for grav-
itational collapse. Chapter 3 discusses how to obtain realistic estimates of collapse times by using dynamical
approximations based on the Lagrangian formulation of fluid dynamics. In particular, §3.1 analyzes the
Zel’dovich approximation, §3.2 the homogeneous ellipsoidal collapse model and §3.3 the Lagrangian pertur-
bation theory. In §3.4 the probability distribution function of inverse collapse times, necessary to construct
the MF, is found, while §3.5 gives a final discussion.

Chapter 4 describes the statistical procedures which are needed to construct the dynamical MF. §4.1
describes a Press & Schechter-like procedure, §4.2 and §4.3 a procedure based on the excursion set approach,
while §4.4 describes the complications connected to the geometry of collapsed regions in Lagrangian space.
Finally, §4.5 gives the main conclusions on the dynamical MF.

The MF world is described in Chapter 5. Three main topics are discussed: observational determinations
of masses, cosmological applications of the MF theories and possible applications of the dynamical MF theory
described in Chapters 3 and 4. §5.1 deals with galaxies, §5.2 with galaxy groups and clusters, §5.3 with
high-redshift objects.

Finally, Chapter 6 comments on the future prospects of the dynamical MF theory, from the comparison
to numerical simulations to the future applications which are in progress.
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Chapter 1

Gravitational Dynamics In

Cosmological Models

It is now widely believed that observed cosmological structures grew from small perturbations in a quasi-
homogeneous Universe. The origin of such perturbations is generally ascribed to quantum fluctuations arisen
during an inflation era which took place soon after the Big Bang. Many observational evidences strongly
suggest the presence of a gravitationally dominant dark matter component (which can be made up of different
species), responsible for matter perturbations. Despite many efforts, the problem of gravitational evolution
of such perturbations remains (analytically) unsolved, except in special cases like perturbative expansions,
which are accurate as long as matter perturbations are not too large, or exact solutions in special symmetries,
like planar or spherical. These special solutions, though of not general validity, can help to understand some
important properties of collapsed structures.

This chapter describes in some detail the cosmological models within which the MF theory has been
developed, and the process of structure formation according to such models. §1.1 describes the gravitational
instability scenario of structure formation, the main families of cosmological models not ruled out by observa-
tions, and the various tools which help to follow the evolution of the initial quasi-homogeneous configuration
into the non-linear regime. §1.2 gives a summary of the mathematical formalism used in cosmology and in
the present work. §1.3 discusses the process of structure formation, describing the complications of the real
process and some (over)simplifications which make the problem tractable.

This chapter aims to summarize the main arguments, to assess the notation and to comment on those
points which are relevant for further analyses. The arguments treated in this chapter are standard in
cosmology (except when explicitly stated); complete presentations of these arguments can be found in many
textbooks, e.g. in Weinberg (1972), Peebles (1980), Kolb & Turner (1989), Padmanaban (1992), Peebles
(1993), Coles & Lucchin (1995).

1.1 Cosmological Models

According to the “standard” gravitational instability scenario, cosmological structures formed from gravi-
tational collapse of small fluctuations, already present at very early epochs. Such primordial fluctuations
are often thought to have arisen during an inflationary era as quantum fluctuations: the Universe, soon
after the Big Bang (when the temperature was about 1015 GeV), experienced a phase of inflation, i.e. of
accelerated expansion, caused by a field (the inflaton) whose vacuum energy happened to dominate, giving
rise to negative pressure. The stretching caused by the accelerated expansion made the quantum fluctuations
of the inflaton field to become “classical”. Inflation has been invoked as a mechanism able to solve a number
of other problems, giving a dynamical explanation of the flatness problem (why is the cosmological density
so similar to the critical one), the uniformity of the CMB, and the lack of topological defects, such as the
monopoles, which can be created during the cosmological phase transitions in the early Universe.

There is not one single theory of inflation: such theories are based on high-energy physics theories, many
of which have been proposed. However, many inflation theories agree in predicting very simple properties
for the perturbation field. In particular, the typical resulting Universe is (almost) flat (i.e. Einstein-de
Sitter, see §1.2.1), regardless of the initial geometry (which can be even chaotic); this means that the actual
background density is predicted to be almost equal to the critical one. However, many particular inflation
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scenarios predict matter densities less than the critical one; global flatness is often preserved by means of
a cosmological constant term (see §1.2.1). The perturbation field is usually predicted to be Gaussian; the
central limit theorem assures that, if the situation is “complex” enough, Gaussian statistics are unavoidable.
However, some particular scenarios predict specific (weak) non-Gaussian features. The power spectrum
of matter fluctuations is typically predicted to be P (k) ∝ kn (see §1.2.7 for a precise definition), with n
almost equal to one (as already proposed by Harrison (1970) and Zel’dovich (1972)), or slightly less than
one (“tilted” power spectrum); note that measurements based on CMB anisotropy at large scales constrain
the spectral index n to be not very different from one. Finally, inflation can predict a stochastic background
of gravitational waves (tensor modes) to be present. These have no influence on the subsequent evolution of
perturbations, since tensor modes cannot collapse, but would be observed on the CMB at very large scales.

Once the kinds of particles present in the Universe and the statistical properties of primordial fluctuations
are known, the fluctuation field can be evolved up to recombination, when the temperature dropped to small
enough values to let the ionized gas recombine, thus decoupling from radiation; this is the “instant” at which
the CMB is observed (more properly, recombination takes a finite time to be completed). The evolution of
perturbations up to recombination is relatively easy to follow, as they remain small all the time, so that
linear theory can be safely used (see §1.2.3). The evolution depends on the number and type of particles
present in the cosmological fluid. In this epoch the nature of the dark matter (cold, hot, warm, mixed)
becomes important: large velocity dispersions in a hot dark matter (HDM) component smear out small-
scale perturbations, while cold dark matter (CDM) conserves fluctuations at all cosmologically relevant
scales. Since the evolution is linear, the power spectrum at recombination is connected to the primordial
one by means of a transfer function T (k):

Prec(k) = Pprim(k) T 2(k). (1.1)

Transfer functions for many different scenarios are available in the literature.
It has not been possible to decide, from cosmological observations, which kind of matter dominates

our Universe. Anyway, two conclusions are widely accepted: purely baryonic models are nearly ruled out
by CMB, nucleosynthesis and large-scale structure constraints, especially if the Universe is flat. Second,
pure HDM models, having no small-scale power, fail to predict the formation of small-scale objects such as
galaxies. The most widely discussed model, in the last decade, has been the CDM model. Standard CDM
is based on the hypotheses that (i) the Universe is flat, (ii) the Hubble constant is H0=50 km/s/Mpc (see
§1.2.1), (iii) primordial fluctuations are Gaussian, with Harrison-Zel’dovich power spectrum. Before COBE
satellite observations of the CMB, the spectrum was normalized by requiring that the mass variance on
the scale of 8h−1 Mpc, σ8, were equal to one, as suggested by observations of galaxy catalogs (Davis &
Peebles 1983); in either case, the variance in the number of galaxies can be different from the underlying
mass variance, by a factor b = 1/σ8 (bias factor; see Kaiser 1984, or Dekel & Rees 1987). The biased CDM
models assumed a certain value for the bias parameter.

After COBE, all models are normalized on the CMB fluctuations at large scales (typically neglecting the
possible contribution of gravitational waves); the COBE-normalized standard CDM model gives too much
power at small scales, and so is excluded by observations. However, it remains a good “template” theory to
understand large-scale structure: most current and popular models are just variations or extensions of the
CDM one. The main families of models currently proposed in the literature are:

• open CDM: CDM in an open Universe;

• Λ CDM: CDM in a flat Universe with cosmological constant;

• tilted CDM: CDM with tilted primordial power spectrum (n 6= 1);

• C+HDM: two dark matter components, a hot (20-30%) and a cold one.

It is necessary to stress, before going on, that the general scenario just described is not the only one
proposed. An important class of alternative scenarios is that of topological defects. These objects can form
during particular cosmological phase transitions which take place after the inflation era: a spontaneous sym-
metry breaking causes different points of space to get to equivalent but different vacuum states; topological
defects form at the interface of zones dominated by different vacuum configurations. Their topology can
range from domain walls to strings, monopoles and global textures; while domain walls and monopoles are
ruled out by current observations, the validity of the cosmic strings and textures scenarios will be decided
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by future CMB observations, especially by the COBRAS/SAMBA experiment. Such topological defects act
as seeds of structure formation; they can, for instance, provide small-scale power in the HDM scenario.

After recombination, fluctuations continue growing, until they turn non-linear. At this stage structure
formation takes place: collapsed clumps form, which eventually reach an equilibrium configuration (viri-
alization), passing through a number of complicated transient configurations. As a matter of fact, large
cosmological structures (e.g. galaxy clusters or superclusters) are likely to be in their transient phase, while
smaller structures (e.g. galaxies) have probably reached an equilibrium state, at least in their inner parts.
The non-linear evolution of perturbations can be safely followed by means of the Newtonian approximation of
gravity, as long as non-linear perturbations are well inside the horizon, peculiar velocities are non-relativistic
and the wavelengths considered are much larger than the event horizon of every compact object present.
Newtonian gravity is non-local (action at distance), as every particle is influenced in its motion by all the
other particles in the Universe. Non-locality makes the Newtonian problem very difficult to solve: for in-
stance, it is not possible in an N-body simulation to follow the motion of a particle without following at the
same time the motion of all the other particles.

Different methods have been developed to follow the evolution of perturbations in the non-linear regime.
These are qualitatively described below; the relevant equations will be given in the next section.

• N-body simulations: a direct method to follow the non-linear evolution of perturbations is that of
numerically solving the equations of motion for given initial conditions. This can be done by means of
large N-body simulations, where a perturbed lattice of particles approximates the continuum of matter
in the Universe. N-body simulations have the great merit of giving good numerical approximations of
the exact solution, but have three main problems: they are very time-expensive, limited in resolution
range, and give a “blind” solution, which does not directly shed light on the various dynamical effects
responsible for the behavior of the system. Anyway, a deep comprehension of gravitational collapse
can come by comparing various analytical arguments to N-body simulations; as a matter of fact,
cosmological N-body simulations have become an invaluable tool to describe and understand the non-
linear evolution of perturbations.

• Linear theory: on large scales, much larger than the typical correlation length of the matter field,
perturbations are still small compared to the background. It is then a reasonably good approximation
to describe them as if they were in linear regime, i.e. neglecting the non-linear transfer of power from
small to large scales. Linear theory is presented in full detail in Peebles (1980). As a crude argument,
one could try to predict the onset of non-linearity by extrapolating linear theory up density contrasts
of order one; this has been shown to be a poor description of the true non-linear evolution of structures
(see, e.g., Bond et al. 1991; Coles, Melott & Shandarin 1993).

• Spherical collapse: this is one of the few cases in which analytical solutions can be found (Gunn &
Gott 1972; Peebles 1980). In particular, the collapse of a top-hat perturbation (constant overdensity
inside a sphere) has often been used to describe the collapse of isolated structures, such as galaxies or
galaxy clusters. Note that spherical collapse is local: the initial overdensity is the only quantity needed
to evolve the system. Mathematically, collapse corresponds to the formation of a singularity (infinite
density at the center). In practice, real perturbations are not perfectly homogeneous, and they do not
reach a singularity; it is typically assumed that collapse to a singularity corresponds to the virialization
of the structure. All these ideas will be criticized in §1.3.

• Ellipsoidal collapse: the collapse of a homogeneous ellipsoid is described by a set of coupled ordinary
differential equations; no analytical solution is known for this, but the evolution equations can be easily
integrated numerically (White & Silk 1979; Peebles 1980; Monaco 1995; Bond & Myers 1996a). At
variance with the spherical model (which is contained as a limiting case), the ellipsoidal model takes
the surrounding Universe into account by means of a global tidal force. The ellipsoidal model has
sometimes been used to describe the collapse of structure; it will be described in detail in §3.2.

• Peaks: an idea in embryo in Doroshkevich (1970), and then developed by Peacock & Heavens (1985),
Bardeen et al. (1986) and many others, is that structures form in the peaks of the initial density field,
smoothed on a relevant scale. Objects can then be modeled as evolving from peaks, whose statistical
properties are known. However, the peak paradigm has been criticized both from the theoretical point
of view (see, e.g., Shandarin & Zel’dovich 1989), and from the numerical point of view (Katz, Quinn &
Gelb 1993, van de Weigaert & Babul 1994; but see Bond & Myers 1996b for a different view). The main
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criticism is that the peak paradigm neglects the important role of tides, which are able to fragment
peaks or make them merge with neighboring peaks.

• Eulerian perturbation theory: linear theory is just the first term of a perturbative solution of the
evolution equations for the matter field. Further-order terms give some information on the non-linearly
evolved matter field, such as the skewness or the kurtosis1 of the density contrast (see, e.g., Bouchet
1996). Unfortunately, Eulerian perturbation theory can describe just weak deviations from linearity:
it breaks down (all the contributions are of the same order) as soon as the density contrast becomes
comparable to one.

• Zel’dovich approximation: Zel’dovich (1970) proposed a model, in which particles maintain their
peculiar velocity (in comoving coordinates!) and make straight paths through space. Then, structure
formation is a process similar to caustic formation in geometrical optics. The main features of Zel’dovich
approximation will be described in §1.2.6 and §3.1; it is to be noted that it has become a very simple and
powerful tool to understand gravitational evolution for density contrasts of order unity, the so-called
mildly non-linear regime.

• Lagrangian perturbation theory: the Zel’dovich approximation is the first term of a perturbative
series; the perturbed quantity is not the density, as in Eulerian perturbation theory, but the displace-
ment of the particles from the initial position. This change has far-reaching consequences: Lagrangian
perturbation theory retains its validity in the mildly non-linear regime, extending in some important
cases up to first collapse. It will be deeply analyzed in §1.2.6 and §3.3.

• Other approximations: a number of other approximate schemes to describe the mildly non-linear
evolution of perturbations have been proposed; they have been reviewed by Sahni & Coles (1996).
Among them, the adhesion model (Gurbatov, Saichev & Shandarin 1986) is based on the idea of
sticking particles as their trajectories, found by means of Zel’dovich approximation, try to intersect,
to mimic the formation of bound gravitational structures; the frozen-flow approximation (Matarrese
et al. 1992) holds the peculiar velocity field constant in space, as if particles moved without inertia;
the linear potential approximation (Bagla & Padmanaban 1994, Brainerd, Scherrer & Villumsen 1994)
makes particles move in a constant gravitational potential.

• BBGKY hierarchy: all the approximations listed above attempt to describe the linear or mildly
non-linear regime of gravitational clustering. The highly non-linear regime, which describes structure
evolution toward a relaxed equilibrium state (if reached), is much more difficult to describe. An attempt
in this direction was made by means of the so called BBGKY hierarchy of equations (see, e.g., Peebles
1980), a statistical approach which has been successful in describing plasma physics. However, due
to the long-range character of gravitational forces, the BBGKY infinite hierarchy never closes; some
equilibrium ansätze have been used in literature, but the matter is still debated. In any case, all
the proposed closure ansätze apply to the strong clustering regime, where the two-point correlation
function is much larger than one; this happens only in the inner parts of the formed structures, so
these theories are not relevant when attempting to describe the main global properties of collapsed
structures.

1.2 Theoretical cosmology: a summary

This section aims to sum up the main cosmological equations which are relevant for subsequent discussions,
to set up the notation and terminology (which often varies from author to author), and to comment on some
points which will be relevant in the following. A complete presentation can be found in the textbooks cited
at the beginning of this chapter.

1.2.1 Background cosmology

It is assumed that our observable Universe is a perturbed Friedmann-Robertson-Walker (hereafter FRW)
one (with a possible cosmological constant term); perturbations are assumed to be small at recombination,
at a redshift z ∼ 1500.

1 Skewness and kurtosis of a distribution are suitably normalized measures of the third and fourth moment of the distribution
itself; the skewness indicates the degree of asymmetry of a distribution, the kurtosis the sharpening or the broadening with
respect to the Gaussian one.
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FRW background cosmologies are justified by the observation that the Universe is isotropic at large scales;
if the metric is analytical, this assumption, together with the cosmological principle, which states that there
are not preferred observers in the Universe, suffices in demonstrating that the Universe is homogeneous
(Weinberg 1972). A different view can be found in Pietronero, Montuori & Sylos-Labini (1996): if the
matter distribution is non-analytical, like a fractal or a multifractal, the observed isotropy does not imply
homogeneity. Many observations, especially those of CMB, seem to confirm large-scale homogeneity, even
though the final demonstration is still matter of debate (see, e.g., Peebles 1993, Davis 1996, Pietronero et
al. 1996).

The FRW metric can be obtained from Einstein’s equations by assuming the largest degree of spatial
symmetry (invariance for translations and rotations). A relevant quantity is the scale factor a(t), which
describes how distances scale with time, as a consequence of Hubble expansion. It is connected to the
cosmological redshift by:

1 + z(t) = a(t0)/a(t), (1.2)

where t0 is the present time and the redshift z is measured for an object in our past light cone at the
cosmological epoch t. If ρ̄ is the background energy density and Λ is a cosmological constant term, the
evolution equation for the scale factor is the following:

ȧ2 =
8

3
πGρ̄a2 +

1

3
Λa2 − R−2, (1.3)

where R is the curvature of the Universe (it is infinite if the Universe is flat, imaginary if the Universe is
open), and the dot denotes the time derivative. The normalization of the scale factor is arbitrary; it is then
normalized as:

a(t0) = 1. (1.4)

To determine the evolution of a(t), it is necessary to give an equation of state for the matter or radiation
present in the Universe. After the recombination, the Universe is dominated by non-relativistic pressureless
matter, so that:

p = 0, (1.5)

and

ρ̄(t) ∝ a−3. (1.6)

The Hubble parameter is defined as:

H(t) = ȧ/a; (1.7)

the Hubble constant is then H(t0) = H0. If Λ = R−1 = 0, the Universe is flat, and is called Einstein-de
Sitter; the background density in this case is called critical density:

ρ̄cr(t) =
3H2

8πG
. (1.8)

It is then convenient to define, for any FRW cosmology, the following density parameter:

Ω(t) = ρ̄/ρ̄cr. (1.9)

Ω = 1 denotes the Einstein-de Sitter cosmology; in this case it remains constant in time. If Ω < 1, and
the cosmological constant is null or not large enough, then the Universe is open; if Ω > 1 (and there is no
negative cosmological constant), the Universe is closed. The cosmological density parameter Ω0 is:

Ω0 = Ω(t0). (1.10)

The three constants H0, Ω0 and Λ, together with the normalization of the scale factor, define uniquely
the FRW background model. The Hubble constant is parameterized as usual:

H0 = h 100 km s−1 Mpc−1, (1.11)
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where h contains our ignorance on the real value of H0 (0.5 ≤ h ≤ 0.8).
In the following, only three families of FRW cosmological models will be considered (the others are not

of cosmological interest):

1) flat models with no cosmological constant: Ω = 1, Λ = 0;

2) open models with no cosmological constant: Ω < 1, Λ = 0;

3) flat models with positive cosmological constant: Ω < 1, Λ 6= 0, Ω + Λ/3H2
0 = 1.

In model (1), the FRW equation becomes:

ȧ2

a2
=

8

3
πGρ̄, (1.12)

whose solution is:

a(t) = (t/t0)
2/3. (1.13)

In model (2):

ȧ2

a2
=

8

3
πGρ̄

(

1 +
(

Ω−1
0 − 1

)

a
)

, (1.14)

and the a(t) evolution can be expressed through the following parametric representation:

a(η) =
Ω0

2(1 − Ω0)
(coshη − 1) (1.15)

t(η) =
Ω0

2H0(1 − Ω0)3/2
(sinhη − η).

In model (3):

ȧ2

a2
=

8

3
πGρ̄

(

1 +
(

Ω−1
0 − 1

)

a3
)

, (1.16)

a(t) =
(

Ω−1
0 − 1

)−1/3
sinh2/3

(

3

2

√

Λ

3
t

)

. (1.17)

1.2.2 Perturbations

The evolution of perturbations will be followed by approximating cosmological matter as a perfect pres-
sureless fluid. This choice is reasonable as long as the scales considered are much larger than the mean
interparticle distance. For dark matter perturbations, pressure can be neglected if dark matter is cold
(CDM); even for HDM, free streaming which survives after recombination can be neglected at least at the
scales of galaxy groups and clusters. Finally, as mentioned above, Newtonian gravity will be used.

It is convenient to subtract the effect of Hubble expansion from the evolution of perturbations. If r is
the physical coordinate, the comoving coordinates x is defined as:

r = ax. (1.18)

In this way, a point comoving with the background has fixed comoving coordinates x. The peculiar velocity
is defined as:

v = ṙ − Hr = aẋ. (1.19)

The density contrast is defined as:

δ(x) = (ρ(x) − ρ̄)/ρ̄. (1.20)

This dimensionless quantity is bound to be larger than −1, while it can grow up to infinite (very large)
positive values.
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In Newtonian cosmology, it is not possible to construct a meaningful gravitational potential whose Lapla-
cian gives the background density: Newtonian gravity cannot provide a self-consistent cosmological model.
Nonetheless, it is possible to construct a peculiar potential for matter fluctuations:

∇2
xΦ = 4πG(ρ − ρ̄)a2. (1.21)

This Poisson equation, which connects the peculiar potential to the matter distribution, is one of the equa-
tions for the evolution of cold matter perturbations. The subscript x in the ∇ operator indicates that the
differentiation is performed with respect to the comoving coordinate.

The gradient of the peculiar potential gives the gravitational force acting on fluid elements. The Euler
equation of motion for a generic fluid element is:

∂v

∂t
+

1

a
(v · ∇x)v +

ȧ

a
v = −∇xΦ

a
. (1.22)

The last evolution equation is the continuity one:

∂δ

∂t
+

1

a
∇x · (1 + δ)v = 0. (1.23)

1.2.3 Eulerian linear theory

When the density contrast is much smaller than one, δ ≪ 1, and peculiar velocities are small enough to
satisfy (vt/d)2 ≪ δ, where t is the cosmological time and d is the coherence length of the matter field, the
system of equations (1.21 – 1.23) can be linearized, leading to the equation:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρ̄δ (1.24)

This second-order equation gives two solutions, which represent a growing and a decaying mode. The growing
mode, denoted by b(t), is the one of cosmological interest, as it is the one responsible for the growth of small
perturbations; it will always be assumed that the decaying mode has already faded away. In this case, the
velocity field is connected to the density contrast as follows:

∇x · v = −a
∂δ

∂t
∇x × v = 0 (1.25)

in the sense that any difference from this relation fades away with the decaying mode. An interesting
consequence is that any primordial vorticity is damped out by linear evolution.

In the following, the solutions of Eq. (1.24) for the growing modes, relative to the three background
models of §1.2.1, are reported:

Ω = 1:

b(t) = a(t). (1.26)

Ω < 1, Λ = 0: it is useful to use the time variable

τ = (1 − Ω(t))−1/2 =

√

(a(Ω−1
0 − 1))−1 + 1. (1.27)

Then:

b(τ) =
5

2(Ω−1
0 − 1)

(

1 + 3(τ2 − 1)

(

1 +
τ

2
ln

(

τ − 1

τ + 1

)))

. (1.28)

Note that this b(t) function saturates to the value 5/2(Ω−1
0 − 1) at large times.

Ω < 1, Λ 6= 0, flat: it is useful to use the time variable

h = coth(3t
√

Λ/3/2). (1.29)

Then,
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b(τ) = h

∫ ∞

h

(x2(x2 − 1)1/3)−1dx. (1.30)

Growing modes are normalized so as to give b(t) ≃ a(t) at early times, and a(t0) = 1.
In the MF theory, collapse time estimates are often based on an extrapolations of the linear regime to

density contrasts of order one. It is then convenient to define the quantity:

δl ≡ δ(ti)/b(ti). (1.31)

This is the initial density contrast linearly extrapolated to the time at which b(t) = 1, which, in an Einstein-de
Sitter background, is the present time; it will be used in next chapters.

Using the growing mode b(t) as time variable, it is possible to write the equations of motion (1.21 – 1.23)
in a more compact way. Defining the peculiar velocity u as

u = dx/db = v/aḃ, (1.32)

the Lagrangian (convective) derivative d/db as

d

db
=

∂

∂b
+ u · ∇x, (1.33)

and the rescaled peculiar gravitational potential ϕ as

ϕ = 2aΦ/3bH2
0Ω0, (1.34)

the following system of equations is obtained:

du

db
+

3

2b

Ω

f2(Ω)
u = − 3

2b

Ω

f2(Ω)
∇xϕ (1.35)

dδ

db
+ (1 + δ)∇x · u = 0 (1.36)

∇2
xϕ =

δ

b
. (1.37)

The function f(Ω) = ḃ/Hb ≃ Ω0.6 is defined in Peebles (1980); note that Ω/f2(Ω) ≃ Ω−0.2 is weakly
time-dependent.

1.2.4 Spherical Collapse

Spherical symmetry is one of the few cases in which gravitational collapse can be solved exactly (Gunn &
Gott 1972; Peebles 1980). In fact, as a consequence of Birkhoff’s theorem, a spherical perturbation evolves
as a FRW Universe with density equal to the mean density inside the perturbation.

The simplest spherical perturbation is the top-hat one, i.e. a constant overdensity δ inside a sphere of
radius R; to avoid a feedback reaction on the background model, the overdensity has to be surrounded by a
spherical underdense shell, such to make the total perturbation vanish. The evolution of the radius of the
perturbation is then given by a Friedmann equation.

The evolution of a spherical perturbation depends only on its initial overdensity. In an Einstein-de Sitter
background, any spherical overdensity reaches a singularity (collapse) at a final time:

tc =
3π

2

(

5

3
δ(ti)

)−3/2

ti. (1.38)

By that time its linear density contrast reaches the value:

δl(tc) = δc =
3

5

(

3π

2

)3/2

≃ 1.69. (1.39)

In an open Universe not any overdensity is going to collapse: the initial density contrast has to be such that
the total density inside the perturbation overcomes the critical density. This can be quantified (not exactly
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but very accurately) as follows: the growing mode saturates at b(t) = 5/2(Ω−1
0 − 1), so that a perturbation

ought to satisfy δl > 1.69 · 2(Ω−1
0 − 1)/5 to be able collapse.

Of course, collapse to a singularity is not what really happens in reality. It is typically supposed that the
structure reaches virial equilibrium at that time. In this case, arguments based on the virial theorem and on
energy conservation show that the structure reaches a radius equal to half its maximum expansion radius,
and a density contrast of about 178. In the subsequent evolution the radius and the physical density of the
virialized structure remains constant, and its density contrast grows with time, as the background density
decays. Similarly, structures which collapse before are denser than the ones which collapse later.

Spherical collapse is not a realistic description of the formation of real structures; however, it has been
shown (see Bernardeau 1994b for a rigorous proof) that high peaks (> 2σ) follow spherical collapse, at least
in the first phases of their evolution. However, I will show in Chapters 3 and 4 that a small systematic
departure from spherical collapse can change the statistical properties of collapse times.

Spherical collapse can describe the evolution of underdensities. A spherical underdensity is not able
to collapse (unless the Universe is closed!), but behaves as an open Universe, always expanding unless its
borders collide with neighboring regions. At variance with overdensities, underdensities tend to be more
spherical as they evolve, so that the spherical model provides a very good approximation for their evolution.

1.2.5 Lagrangian formulation

The fluid equations described in §1.2.2 are based on the so-called Eulerian formulation: the dynamical
variables are defined in the (comoving) real space x. In other words, the dynamical variables are measured
by observers fixed in the comoving space (i.e. comoving with the background). Alternatively, one can decide
to describe the system by means of observers comoving with the perturbed matter; this is the Lagrangian

formulation of fluid dynamics (see, e.g., Shandarin & Zel’dovich 1989). Note that the freedom of choosing
among different equivalent formulations corresponds to the (actually much wider) gauge freedom of general
relativity.

Let q = x(ti) be the position of a mass element (contained in a vanishingly small volume centered on
q) at an initial time ti; it is defined as the Lagrangian coordinate. Note that the Lagrangian coordinate can
then be seen as a “label” which uniquely identifies the mass elements. The trajectory x(q, t) of the element
q can be written in terms of a displacement S from the initial, Lagrangian to the final, Eulerian position:

x(q, t) = q + S(q, t). (1.40)

The problem of the evolution of a self-gravitating fluid can be reformulated in terms of equations for the
displacement field S(q, t).

A natural limit of the Lagrangian formulation (at least within an analytical approach) lies in the following
fact. Eq. (1.40) is a mapping from the space q to the space x. In the dynamical evolution of cold matter,
it can happen that two mass elements get to the same point. This event is called orbit crossing (hereafter
OC), or shell crossing (this expression is taken from spherical collapse, where it describes different shells of
material crossing each other). OC has a number of consequences:

• The q → x mapping is not biunivocal from OC on, as different (at least three) mass elements q get to
the same Eulerian position x. The situation after OC is called multi-streaming, and the places where
it happens are called multi-stream regions.

• The OC instant can mathematically be defined as the instant at which the Jacobian determinant of
the q → x mapping vanishes:

J(q, t) = det

(

∂xa

∂qb

)

= 0. (1.41)

• Because of continuity, at OC the density formally goes to infinity; this is called caustic formation. A
complete description of the geometry and topology of gravitational caustics, together with a classifi-
cation taken by Arnol’d’s catastrophe theory and an interesting connection to geometrical optics, can
be found in Shandarin & Zel’dovich (1989).

• While before OC the Lagrangian formulation can be used to get powerful approximations for the mildly
non-linear regime, after OC the analytical approximations break down.
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• If a (subdominant) dissipative, cold component, e.g. a baryonic component, is present, then shock
waves in it will form at OC; this is caused by the fact that the acoustic speed is very low at that
moment.

• If the initial field is perturbed at small scales, then OC will take place soon after recombination, and
multi-stream regions will dominate.

The last point would suggest that the Lagrangian approach is, as it stands, not very useful. However, as
linear theory is supposed to apply at very large scales, where small-scale nonlinearities can be neglected, so
the Lagrangian scheme can be applied to smoothed versions of the initial field, in the hypothesis that small-
scale multi-streaming does not influence much the dynamics of larger scales. This is probably the strongest
hypothesis which is at the basis of many dynamical approximations based on Lagrangian formulation.

The equations for the displacement field S have been found by several authors: Buchert (1989), Bouchet
et al. (1995) and Catelan (1995). As a matter of fact, all of these authors give equivalent but formally quite
different versions of the same system of equations; I report the equations by Catelan (1995):

[(1 + ∇q · S)δab − Sa,b + SC
a,b]

d2Sb,a

dτ2
= α(τ)[J − 1] (1.42)

εabc[(1 + ∇q · S)δbd − Sb,d + SC
b,d]

dSc,d

dτ
= 0 . (1.43)

In these equations, the time variable τ defined in Eq. (1.27) has been used; the function α(τ) is equal to
6/(τ2 + k) (k = −1, 0 or 1 for open, flat and closed models). The quantities δab and εabc are, respectively,
the Kronecker tensor and the Levi-Civita antisymmetric pseudotensor. The tensor Sa,b is commonly called
deformation tensor, J is again the Jacobian determinant defined in Eq. (1.41), and SC

a,b is the cofactor
matrix of Sa,b; comma denotes partial derivative with respect to the Lagrangian coordinate qa. The first set
of equations determines the evolution of the S field, while the second one is an irrotationality condition in
Eulerian space, which does not hold if the initial displacement field has non-vanishing vorticity.

In this framework, the only dynamical variable is the displacement field S. The quantities defined in
§1.2.2 can be expressed as function of S:

v(q, t) = a(t)dS(q, t)/dt (1.44)

1 + δ(q, t) = J(q, t)−1[1 + δ(q, ti)] ,

Here ti denotes again an initial time.
A defect of the evolution equations for S is that it is difficult to understand the behavior of the system by

a qualitative analysis. An alternative “mixed” formulation can be found by means of the system of equations
(1.35–1.37). In this system time derivatives are Lagrangian, in the sense that the time differential operator
follows the motion of the mass element considered. However, Eulerian-space derivatives are still present. To
eliminate them, one can consider the space derivatives of the velocity field u as separate dynamical variables:

ua,b = θδab/3 + σab + ωab. (1.45)

The expansion θ is the divergence of the velocity field, and gives the global expansion of the mass element
centered on the point considered; the shear σab is its traceless symmetrical part, and gives the relative
deformation of the principal axes; the vorticity ωab, its traceless antisymmetric part, represents a global
rotation. By differentiating the Euler equation with respect to the Eulerian space coordinate, one can obtain
“Lagrangian” evolution equations (i.e. with non space derivatives) for the density contrast, expansion (the
Raychaduri equation), shear and vorticity (see, e.g., Ellis 1971). It will be shown in §3.2 that the evolution
equation for the shear couples with the so-called tidal tensor:

Eab = ϕ,ab −∇2
xϕ/3 (1.46)

To close such a system of equations, it is necessary to find an evolution equation for the tidal tensor. An
attempt in this direction, based on general relativity, can be found in Matarrese, Pantano & Saez (1993,1994)
and Bertschinger & Jain (1994), but its application to Newtonian gravity has been criticized, for instance,
by Kofman & Pogosyan (1995) and Matarrese (1996). As a conclusion, such mixed Eulerian–Lagrangian
formulation, which is useful to understand many characteristics of the gravitational problem, is not useful
to construct a self-consistent formulation of gravitational dynamics.
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1.2.6 Lagrangian perturbations and other approximations

The Lagrangian system, Eq. (1.42) and (1.43), can be perturbatively solved for small displacements. This
has been done by Buchert (1989), Moutarde et al. (1991), Bouchet et al. (1992), Buchert (1992), Buchert &
Ehlers (1993), Lachièze-Rey (1993a,b), Buchert (1994), Bouchet et al. (1995) and Catelan (1995); see also
Bouchet (1996) and Buchert (1996) for reviews. The first order solution, for suitable initial conditions (as
given by the linear growing mode), is the well-known Zel’dovich (1970) approximation:

x(q, t) = q − b(t)∇qϕ(q). (1.47)

This is equivalent to say that particle “velocities” remain constant in “time”:

du

dt
= 0 (1.48)

(although particles do accelerate in physical coordinates). This is not the place to list all the characteristics,
merits and limits of the Zel’dovich approximation; see Shandarin & Zel’dovich (1989) for a review. It is
sufficient to recall that the “truncated” version of this approximation, obtained by applying it to filtered
versions of the initial field, is very effective in describing the mildly non-linear behavior of N-body density field
(see, e.g., Coles, Melott & Shandarin 1993). After OC, the Zel’dovich approximation breaks down: particles
maintain their u velocity, so that the collapsed “pancakes” are soon washed away by particle motions; in
the real problem collapsed regions typically remain bound.

The perturbative series has been calculated up to third order; here it will be assumed that the decaying
mode is not present, the initial velocity field is irrotational and initial peculiar velocity and acceleration are
parallel (see Buchert 1989, 1992 and Buchert & Ehlers 1993 for a discussion). It turns out that, at any order,
the terms can be written as a finite sum of terms which are separable in space and time (Ehlers & Buchert
1997). At the third order, the perturbative term is divided into three separable modes. Then:

S(q, t) = b1(t)S
(1)(q) + b2(t)S

(2)(q) + b3a(t)S(3a)(q) (1.49)

+b3b(t)S
(3b)(q) + b3c(t)S

(3c)(q) + . . .

First and second order solutions are irrotational in Lagrangian space, i.e. the matrices S
(1)
a,b and S

(2)
a,b

are symmetric. The third-order contribution is made up of two irrotational modes, 3a and 3b, a purely

rotational one, as S
(3c)
a,b is antisymmetric (the reason for the presence of this rotational component is that

the q → x transformation is non-Galileian; see the discussions in Buchert 1994 and Catelan 1995).
The solution of the time equations, which will be called time functions, are accurately represented by the

following expressions (valid for the growing modes):

b1 = −b(t)

b2 = − 3

14
b2
1

b3a =
1

9
b3
1 (1.50)

b3b = − 5

42
b3
1

b3c =
1

14
b3
1.

These expressions are exact for an Einstein-de Sitter Universe, and very accurate for Universes with Ω ∼ 1
(see Bouchet et al. 1995; Catelan & Theuns 1996b). It is then apparent that the use of the growing mode as
time variable allows us to factorize out the explicit dependence of the displacement field on the background
cosmology.

It is convenient to express the S(i) corrections in terms of scalar or vector potentials:

S(i) = ∇ϕ(i), n = 1, 2, 3a, 3b (1.51)

S(3c) = ∇× ϕ(3c).
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Defining the principal and mixed invariants of one or two tensors as follows:

µ1(Aab) = tr(Aab) = Aaa

µ2(Aab, Bab) =
1

2
(AaaBbb − AabBab) (1.52)

µ2(Aab) = µ2(Aab, Aab)

µ3(Aab) = det(Aab),

the perturbative potentials can be written as the solutions of the following Poisson equations:

ϕ(1) = ϕ

∇2ϕ(2) = 2µ2(ϕ
(1)
,ab)

∇2ϕ(3a) = 3µ3(ϕ
(1)
,ab) (1.53)

∇2ϕ(3b) = 2µ2(ϕ
(1)
,ab, ϕ

(2)
,ab)

∇2ϕ(3c)
a = εabcϕ

(1)
,cdϕ

(2)
,db.

The first equality is just a consequence of initial conditions. One can recognize in the first perturbative term
the Zel’dovich approximation, Eq. (1.47).

It has been shown that the second-order term improves the predictive power of the truncated Zel’dovich
approximation in the mildly non-linear regime, while the third-order correction does not seem to introduce
any significant improvement (Melott, Buchert & Weiß 1994; Buchert, Melott & Weiß 1994).

The main problem with Zel’dovich and perturbative Lagrangian approximations is that they break down
after OC. Many authors have then tried to develop approximations which avoid OC or make particles oscillate
around pancakes. The main ones are the following (see Sahni & Coles 1996 for a complete review).

• Adhesion model (Gurbatov, Saichev & Shandarin 1989; see also Shandarin & Zel’dovich 1989): a
vanishing artificial viscosity is introduced in the Zel’dovich equation of motion, Eq. (1.48):

du

db
= ν∇2

xv. (1.54)

As a consequence, particles move as in Zel’dovich approximation up to caustic formation, but remain
stuck as they try to cross each other. Adhesion is able to describe the large-scale skeleton of structures.
Notably, it does not need any truncation, as no small-scale multi-stream regions form. The evolution
of the velocity field is governed by a Burgers equation, a well known equation in mathematical physics,
and it is possible to find analytical solutions for it.

• Frozen flow approximation (Matarrese et al. 1992): the velocity field, in the Eulerian space, is
supposed to be constant in time,

∂u

∂b
= 0; (1.55)

this at variance with the Zel’dovich approximation, where the Lagrangian time derivative of the velocity
field vanishes. In practice, particles move free of inertia, as tracers of a constant velocity field. A
consequence of this approximation is that OC never occurs: particles slow down as they approach the
pancakes, reaching them only asymptotically.

• Linear potential approximation (or frozen potential; Bagla & Padmanabhan 1994; Brainerd, Scher-
rer & Villumsen 1994): the peculiar potential remains constant, as in linear theory:

∂Φ

∂b
= 0. (1.56)

Then particles do cross each other, but, instead of going away from the pancake, they oscillate around
it. Unfortunately, in this approximation it is not possible to find analytical solutions; it is useful to
construct numerical codes which are faster then usual N-body ones, as the potential is not recalculated
at every step.
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1.2.7 Statistics

The initial configuration of the matter field is usually given at recombination; in standard cosmological
scenarios, no perturbation can grow non-linear before that moment. The initial perturbed density contrast
field is given as a random field, whose statistical properties depend on the outcomes of inflation and on
the kind(s) of dark matter particles which are present. As mentioned in §1.1, this random field is usually
assumed to be Gaussian.

For a rigorous definition of random fields, see, e.g., the textbook by Adler (1981). I give here a qualitative
definition: a random field is a field which can take random values at any point; the probability distribution
function (hereafter PDFs) of the values of the field at any point is given, together with all the N-point joint
PDFs. The random fields considered here are homogeneous (the 1-point PDFs are equal at all the points),
isotropic, ergodic (ensemble averages are equivalent to space averages over large-enough volumes; see Adler
1981 for a rigorous definition); moreover, they will be supposed to be sufficiently well-behaved (continuous,
many times differentiable). A Gaussian random field is characterized by the fact that all the joint N-point
PDFs are multivariate Gaussians.

A complete description of the statistical properties of a Gaussian field is given by its 2-point correlation
function, or by its Fourier transform, the power spectrum. If δ(x) is a Gaussian random field, and

δ̃(k) =
1

(2π)3/2

∫

dxδ(x)e−ik·x (1.57)

is its Fourier transform, the power spectrum is defined as:

P (k) = 〈δ̃(k)δ̃(k′)〉δD(k + k′), (1.58)

where δD is a Dirac delta function (note that, because δ(x) is real, δ̃(−k) = δ̃∗(k), where ∗ denotes complex
conjugation). The power spectrum gives information only on the modulus of the transformed density field;
with Gaussian statistics, phases are randomly distributed between 0 and 2π. Specifying a non-Gaussian
distribution is equivalent to specifying a non-flat distribution for the phases.

In conclusion, if initial conditions are Gaussian, the primordial power spectrum and the transfer functions
are sufficient to specify the subsequent dynamical evolution. The statistic of the evolved density contrast
field is however not Gaussian; to understand this, note that the density contrast is bounded to be larger
than −1, but can grow as large as infinite. It has been shown that the 1-point PDF of the evolved density
field is nearly lognormal (its logarithm is Gaussian), at least for some kind of initial conditions (Coles &
Jones 1991; Bernardeau & Kofman 1995).

Transfer functions for different scenarios have been published by many authors; for instance, Bardeen et
al. (1996) give good analytical approximations for the CDM and HDM transfer functions. However, it is
often useful, when testing particular dynamical procedures, to consider simple power spectra, as power laws:

P (k) ∝ kn. (1.59)

n is called spectral index (it is not connected in general to the primordial one). As most “realistic” spectra
are gently curved (in a log k – log P (k) space), such power laws can be used to approximate limited parts
of the spectrum. In this case, an effective spectral index can be defined as the logarithmic derivative of
P (k) at one point. For instance, the effective spectral index at very small scales, if some cold dark matter is
present, is −3, while at the scales relevant for galaxy formation is about −2, rising to −1 or more at galaxy
clusters and superclusters scale. Note that if n ≥ −3 matter clustering proceeds from small to large scales
(hierarchical, bottom-up clustering), while for steeper spectra, as the HDM one, large scale structure forms
before small scale one (top-down scenario).

As mentioned before, the two-point correlation function of the matter field, ξ(x), is simply the Fourier
transform of the power spectrum:

ξ(x) =
1

(2π)3/2

∫

dkP (k)eik·x. (1.60)

Another important quantity, the density contrast variance (often called mass variance) is connected to the
power spectrum. For realistic power spectra, which have power at all scales, the mass variance is usually
infinite; however, if the field is smoothed by means of a window function W (x; R), which filters out all the
perturbations on scales smaller than R, the mass variance is:

18



Λ ≡ σ2 =

∫

dkP (k)W̃ (k; R). (1.61)

Here W̃ (k; R) denotes the Fourier transform of the filter function. The 1-point PDF of the density contrast,
smoothed on the scale R, is then:

Pδ(δ; Λ) =
1√
2πΛ

exp

(

− δ2

2Λ

)

dδ. (1.62)

If the power spectrum is a power law, as in Eq. (1.59), then the mass variance scales with the filter radius
as:

Λ ∝ R−(n+3). (1.63)

As a final remark, initial conditions can be given also in terms of the initial peculiar potential, defined as
in Eq. (1.34), which, being connected to the density contrast through a Poisson equation (Eq. 1.37), shares
with it the same statistical properties. In this case the effective spectral index for the potential is connected
to that of the density contrast through the relation nΦ = nδ − 4.

1.3 The formation of collapsed structures

Once the background geometry is fixed, the kinds of cosmologically relevant particles are known, and the
statistical properties (power spectrum, phase distribution) of the matter field at recombination are known,
the subsequent evolution of the matter field is in principle determined. In practice, the exact behavior of
collapsed objects is so complicated that it is hard to get precise predictions on astrophysical objects such as
galaxies. The necessary introduction of gas dynamics further complicates the problem, through a chain of
events which are very difficult to understand and model, from star formation to feedback due to supernovae
explosions, to the formation of supermassive black holes. When such events take place, very small scales
(fractions of 1 pc) can directly or indirectly interact with cosmological scales (several Mpc); then, to get any
reliable prediction, something like 10 orders of magnitude in scale have to be taken into account at once.

In the following, the various phases of structure formation are outlined. As a matter of fact, structure
formation is a complex mixture of hierarchical, bottom-up clustering and top-down, pancake fragmentation.
In fact, it has been recently realized that, while hierarchical clustering is definitely the most promising
picture for describing structure formation, large scales evolve approximately in a top-down fashion, forming
pancakes which fragment to give rise to smaller structures.

• Linear evolution: at very large scales, or just after recombination, perturbations are very small.
They quietly evolve according to linear theory; however, higher-order corrections, given by Eulerian
perturbation theory, soon become appreciable.

• Mildly non-linear regime: when perturbations reach density contrasts of order one, their evolution
is characterized by the formation of low-contrast, sheet-like structures, commonly called pancakes or
walls, which give rise to filaments and knots at their intersections. Such structures form a network which
fill the space, giving rise to a sponge-like (or swiss cheese-like) topology. This topological situation is
recognizable in current redshift surveys: large voids are surrounded by structures like the great wall,
which are characterized by density contrasts of order one; rich galaxy clusters would correspond to the
already collapsed knots.

• First collapse: as observed in §1.2.4, the mildly non-linear evolution ends with caustic formation.
The local geometry of this collapse is usually pancake-like; however, the most massive objects, which
more or less correspond to the knots or to the peaks of the initial density field, soon collapse along
all the directions, giving rise to spheroidal structures. The global geometry of the collapsed regions is
more complicated: pancakes and filaments can be still collapsing while the knots have already collapsed
along all directions. Nonetheless, the sponge-like topology is just a transient: all matter flows from
walls to filaments and then to knots, which are the only stable structures.

• (Violent) relaxation: when matter collapses to form a bound structure, the mass elements which fall
into the structure soon lose memory of their previous dynamical status and tend towards some kind of
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equipartition. This happens as a consequence of the collective interaction of the falling mass elements
with the whole gravitational potential of the forming structure. This event, which is characterized by
short time scales, is called violent relaxation (Lynden-Bell 1967), and is probably responsible for the
relaxed state of clusters. It leads to the equipartition of velocities, not of energies.

• Substructure erasure, virialization: clumps falling into a collapsed and (violently) relaxed struc-
ture can maintain their identity for a while. This transient ends up when the structure reaches a global
(thermo)dynamical equilibrium, which corresponds to virialization. This is caused by particle-particle
interactions (two-body relaxation); this kind of relaxation, which leads to equipartition of energy, is
slower than violent relaxation. Note that non-virialized matter continues to fall into the relaxing struc-
ture, at least as long as the filamentary network is still present; moreover, the high-density cores of
small clumps can maintain their identity inside almost virialized structures. Observed galaxy struc-
tures, such as groups and clusters, have probably undergone violent relaxation (loose groups may not!),
and are evolving toward a fully virialized state, which has not yet been reached in many if not most
cases.

• Gas heating and cooling: gas does not affect the evolution and collapse of dark matter, provided its
density is much smaller than the dark matter density. At OC, the gas gets shock-heated to very high
temperatures, then radiatively cools down. In some structures, like galaxy clusters, this hot gas (108

K) is visible in the X-ray band. To form stars or other compact, observable objects, the gas, or at least
a component of its, has to cool to low temperatures. This takes place if the density of the gas cloud
is large enough for the cooling (Compton cooling with the CMB, bremsstrahlung, molecular hydrogen
lines etc.) mechanisms to be effective. Cooling time-scales can explain why galaxies have a maximum
size: gas cannot efficiently cool in very large mass clumps, whose dynamical times are shorter than
cooling times.

• Star formation, supernovae feedback: if the gas is able to cool to low enough temperatures,
molecular hydrogen forms, and the gas fragments into small clumps which give birth to new stars.
Depending on the shape of the initial mass function of stars, some or many OB stars can form; such
stars soon become type II supernovae. Notably, this step of structure formation is one of the hardest to
model. The interaction of gas with such energetic objects can strongly influence the cooling history of
gas: supernovae can sweep the gas away from small halos, or create a background ultraviolet radiation
able to maintain the gas ionized. Further particulars of these processes are discussed in §5.1.2 and
§5.3.1.

• QSO activity: another important event, which couples very small with large scale, is the formation
of a supermassive black hole (SBH), giving rise to QSO activity. In large dark matter clumps, gas can
dissipate its angular momentum, acquired during the mildly non-linear evolution, and then collapse
into a rather compact configuration. Such an object can go through a chain of events, which soon
ends up in the formation of a SBH, with mass of order 106 – 109 M⊙. Further in-fall of gas make
the SBH grow in mass and emit a huge amount of radiation at all wavelengths (QSO activity). Such
radiation can strongly interact with the surrounding gas, influencing the properties of the host galaxy
or large-scale environment. SBH formation and evolution is another step of structure formation which
is quite difficult to model.

• Further dynamical and chemical evolution of galaxies: once galaxies are formed, their dynamics
determine the optical morphology: if a differentially rotating disk forms, the galaxy will be observed
as a spiral, while if coherent rotation gets lost and a spheroid forms, the galaxy will be observed as
an elliptical. Further interactions with the surrounding environment can strongly influence galactic
internal dynamics (see, e.g., Giuricin et al. 1993). On the other hand, the chemical abundances of
stars and intergalactic gas evolve, due to supernovae explosions and galactic winds. The end products
of such events are present-day galaxies (see, e.g., the review by Matteucci 1996).

Cosmological models are trying to go through this chain of events, to predict the properties of galaxies,
galaxy groups and clusters, QSOs and other observable structures. Unfortunately, many of the steps listed
just above are not fully understood; future generations of models will hopefully be able to get precise
predictions on astrophysical objects.

Nonetheless, as long as dark matter is concerned, gas dynamical events can safely be neglected, in the
hypothesis that baryons consitute a sub-dominant matter component. As shown in this chapter, even this
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drastically simplified problem is not easy to solve. In the following chapters I will present the approaches
proposed to address the MF problem. All these approaches are based on some approximation to gravitational
dynamics, of the kinds reported in §1.2. The simplest and most used approximation in this context is a
combination of linear theory and spherical collapse: a linearly-extrapolated perturbation which reaches a
density contrast of order one is going to collapse; this is correct for a spherical top-hat perturbation, in which
case the threshold density contrast is 1.69.

With such an approximation, the formation history of an object is much simpler than what actually
happens; in particular:

• as the top-hat perturbation collapses to a point at a certain instant, collapse is well defined; all the
geometrical complications of real collapse are absent;

• virialization is assumed to take place just after collapse; all transients connected to the erasure of
substructures are absent;

• further accretion of material is supposed to be spherical, while accretion takes place preferentially
through filaments.

After many gravitational transients, collapsed and relaxed clumps become more or less spheroidal; this
happens when some kind of equilibrium is reached and further matter infall is negligible, at least in the inner
parts of the clump. In this situation, a spherical symmetry appears a reasonable approximation; however,
this is not caused by a global sphericity of collapse, but is a result of gravitational equilibrium.

When the collapse of a realistic matter field, with no special symmetry imposed, is considered, all the
difficulties discussed above appear. In particular, the definition of collapse is not so straightforward as in the
spherical case. A reasonable choice is to define collapse as the OC: in fact, caustics form at that instant, and
dynamics becomes “complicated” and “interesting”. However, it can be argued that caustics correspond to
the collapse along one axis, while it would be better to wait for the collapse along all the three axes. In this
apparently reasonable objection two different things are confused, namely the local and global geometry of
collapse, which can be quite different from each other. As an example, a matter element collapsing onto a
spherical peak (but not a top-hat) experiences a spindle collapse, in which the two axes perpendicular to
the symmetry axis (the one pointing toward the center of the peak) collapse, while the element is infinitely
elongated along the symmetry axis. Nonetheless, matter accretes with perfect spherical symmetry on the
peak.

On the other hand, OC is a necessary condition for many events to take place: infinite density, infinite
(negative) expansion and infinite shear take place (this is shown in §3.1), while violent relaxation, virial-
ization, gas heating and cooling and other astrophysical events need OC to be triggered. Finally, while
single-stream dynamics can be described by means of analytical tools, multi-stream dynamics is very diffi-
cult to follow, at least at the present state-of-the-art. Then, it is convenient to define collapse as OC, with
the confidence that the structures described in this way constitute those high-density environments within
which astrophysical structures form.
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Chapter 2

A not brief history of the mass

function theory

There is general consensus in setting the birth date of the MF theory in 1974, when the seminal paper of Press
& Schechter (hereafter PS) was published (surprisingly, the same PS formula can be found in Doroshkevich
1967). That paper proposed a heuristic procedure, based on linear theory, to obtain the distribution of
the masses of collapsed clumps. That work inspired the fit for the galaxy luminosity function proposed by
Schechter (1976), but received a limited attention for more than a decade. A real explosion of attention
to the MF theory started in 1988, when the first large N-body simulations started to reveal a surprising
adherence of their results with the PS formula. Many authors tried to extend the PS procedure in many
directions, or proposed different, alternative or complementary procedures. These last years are witnessing
a new wave of interest, which has not yet been exhausted.

The chapter is organized as follows. The PS procedure is described and commented in §2.1. Comparisons
to N-body simulations are reviewed in §2.2. §2.3 reviews the works based on the excursion set formalism,
§2.4 the works based on the peak hypothesis, and §2.5 outlines different attempts to model an MF based on
more realistic dynamical arguments.

2.1 The Press & Schechter Mass Function

It is surprising, in reading the PS paper, to find out that their procedure was developed for a cosmological
framework explicitly different from the “standard” one presented in Section 1.2. Inflation had not been
proposed in 1974, so the perturbation spectrum was a somehow ad hoc element in the theory. Press and
Schechter aimed to analyze the case in which Poisson-distributed small-mass seeds are responsible for matter
perturbations. As a matter of fact their analysis, which relies on the linear evolution of perturbations (§1.2.3),
is applicable (at the same heuristic level) to the standard cosmological scenario; their Poisson-distribution
case would then correspond to a white noise (P (k) ∝ k0) power spectrum, their “minimum variance” case
(seeds on a perturbed lattice) to P (k) ∝ k. Efstathiou, Fall & Hogan (1979) generalized the PS procedure to
general (flat) cosmological models with scale-free (power-law) spectra. The PS procedure is presented here
with the same notation that will be followed throughout the paper.

Let’s consider an Einstein-de Sitter Universe filled with cold (pressureless) gas, with Gaussian initial
perturbations; different cosmologies will be analyzed in Chapters 3 and 4. In this case, the linear growing
mode (§1.2.3) is equal to the scale factor b(t) ≡ a(t) ∝ t2/3. The density contrast, linearly extrapolated to
the present (defined by a(t0) = 1), is denoted, as in §1.2, by δl = δi/ai (the subscript i denotes an initial
time). Let δl be smoothed at a scale R with a filter W (x, R). It will be shown below that the shape of the
window function has a great importance; here W will be supposed to be a top-hat in real space:

W (x, R) ∝ θ(1 − x/R), (2.1)

where θ is the Heavyside step function. Let’s call Λ(R) ≡ σ2
δl

(R) (§1.2.7) the variance of the δl field, when
smoothed on the scale R. Both Λ and R can be used as resolution variables; in the following the Λ variable
will be mainly used.

It is assumed that a collapsed structure forms whenever δl reaches a given threshold δc, of order one.
As seen in §1.2.4, spherical collapse gives δc ≃ 1.69; this is supposed to correspond to the formation of a
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virialized dark-matter halo. The fraction of collapsed mass, at any resolution (Λ value) smaller than Λ, can
then be calculated as the probability of δl being larger than the threshold δc:

Ω(< Λ) =

∫ ∞

δc

Pδl
(δl; Λ)dδl. (2.2)

To express Eq. (2.2) in the mass variable M, it is necessary to determine the mass associated to Λ, or to the
scale R(Λ). In the top-hat smoothing case, it is quite reasonable to set:

M = 4π ¯̺R3(Λ)/3. (2.3)

A point collapsed at a scale R can either be part of a structure of size R or, more generally, of a larger
structure. Then, the number density of structures of mass between M and M + dM — the MF n(M) —
is related to the derivative of the integral MF, Ω(< Λ) through the following “golden rule” (as named by
Cavaliere, Colafrancesco & Scaramella 1991):

Mn(M)dM = ¯̺

∣

∣

∣

∣

dΩ

dM

∣
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∣

∣

dM = ¯̺n(Λ)

∣
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∣

∣

dΛ

dM

∣

∣

∣

∣

dM. (2.4)

Eq. (2.4) is the PS formula for the MF. It is possible to recognize two relevant terms in the right-hand-side
of that equation: a “dynamical” and “statistical” term, n(Λ) = |dΩ/dΛ|,

n(Λ)dΛ =
1

2

δc√
2πΛ3

exp

(

− δ2
c

2Λ

)

dΛ, (2.5)

which contains information on the collapse dynamics (through the parameter δc) and on the statistics of the
initial field, and a “cosmological” term, |dΛ/dM |, which contains information on the power spectrum. If the
power spectrum is a power-law, P (k) ∝ kn, then Λ ∝ R−(n+3) ∝ M−(n+3)/3 (Eq. 1.63), and the PS MF can
be analytically expressed as follows:

n(M)dM =
¯̺

M2
∗

(

1√
2π

)(

n + 3

6

)(

M

M∗

)
n+3

6
−2

exp

(

−1

2

(

M

M∗

)
n+3

3

)

dM. (2.6)

M∗ is the mass corresponding to the scale at which Λ is equal to δc
2. Eq. (2.6) has the following characteristic

shape, shown in Fig. 2.1 (for n = −2 and 1): a power law at small masses, with slope (n + 3)/6 − 2 (which
is ∼ 2 when n ∼ −2 ÷ −1), and a modified exponential cutoff at masses larger than the typical mass M∗.
In Fig. 2.1 the effect of a change in the δc parameter from 1.69 to 1.5 is also shown: the large-mass part is
pushed to larger masses, while the small-mass part is slightly lowered. If the spectrum is not a power-law,
as it happens in realistic cases, Eq. (2.4) can be used to explicitly calculate the MF. However, typical power
spectra are very gently curved, and can be well approximated by a power-law in restricted ranges of scales.
In this cases, the power-law expression given in Eq. (2.6) can still be used.

The PS theory has a number of problems, that can be summarized as follows:

• Statistical problems: in the limit of vanishing smoothing radii, or of infinite variance, the fraction
of collapsed mass, Eq. (2.2), asymptotes to 1/2. This is a signature of linear theory: only initially
overdense regions, which constitute half of the mass, are able to collapse. Nonetheless, underdense
regions can be included in larger overdense ones, or, more generally, non-collapsed regions have a finite
probability of being included in larger collapsed ones; this is commonly called cloud-in-cloud problem.
PS argued that the missing mass would accrete on the formed structures, doubling their mass without
changing the shape of the MF; however, they did not give a true demonstration of that. Then, they
multiplied their MF by a “fudge factor” 2. Other authors (see Lucchin 1989) used to multiply the MF
by a factor (1 + f), with f denoting the fraction of mass accreted by the already formed structures.

• Dynamical problems: the heuristic derivation of the PS MF bypasses all the complications related
to the highly non-linear dynamics of gravitational collapse, described in §1.3. Spherical collapse helps
in determining the δc parameter and in identifying collapsed structures with virialized halos. However,
the PS procedure completely ignores important dynamical elements, such as the role of tides and
the transient filamentary geometry of collapsed structures. Moreover, supposing that every structure
virializes just after collapse is a crude simplification: when a region collapses, all its substructure is
supposed by PS to be erased at once, while in realistic cases the erasure of substructures is connected
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Figure 2.1: PS mass function: (a) n = −2, (b) n = 1.

to the two-body interaction of already collapsed clumps, an important piece of gravitational dynamics
which is completely missed by the PS procedure.

• Geometrical problems: to estimate the mass function n(M) from the fraction of collapsed mass at
a given scale, Ω(< Λ), it is necessary to relate the mass of the formed structure to the resolution Λ.
The reasonable relation given in Eq. (2.3) can be considered only as an order-of-magnitude estimate.
In practice, the true geometry of the collapsed regions in the Lagrangian space (i.e. as mapped in the
initial configuration) can be quite complex, especially at intermediate and small masses; in this case a
different and more sophisticate mass assignment ought to be developed, so that geometry is taken into
account. For instance, if structures are supposed to form in the peaks of the initial field, a different
and more geometrical way to count collapsed structures could be based on peak abundances.

Despite all of its problems, the PS procedure proved successful, as compared to N-body simulations, and
a good starting point for all the subsequent works on the subject.

2.2 N-body simulations

Press and Schechter were the first to performed N-body simulations to test the validity of their formula.
They found some encouraging agreement, but their simulations were limited to 1000 bodies, a very small
number to reach any firm conclusion. Efstathiou, Fall & Hogan (1979) performed similar simulations, with
the same number of point masses, obtaining the same conclusions as PS.

Later, Efstathiou et al. (1988) compared the results of larger (323 P3M, scale-free power spectra) N-
body simulations to the PS formula: their dynamical range in mass was large enough to test the knee of
the MF. The surprising result was that the PS formula nicely fitted their abundances of simulated halos (as
found by means of a percolation friend-of-friend algorithm). Further comparisons with N-body simulations
were performed by Efstathiou & Rees (1988), Narayan & White (1988), Carlberg & Couchman (1989),
Carlberg (1990), Bond et al. (1991), Brainerd & Villumsen (1992), White, Efstathiou & Frenk (1993), Ma
& Bertschinger (1994), Jain & Bertschinger (1994), Gelb & Bertschinger (1994), Katz, Quinn, Bertschinger
& Gelb (1994), Lacey & Cole (1994), Efstathiou (1995), Klypin & Rhee (1994), Klypin et al. (1995), Bond
& Myers (1996b). Most authors reported the PS formula to fit well their N-body results; nonetheless, all the
authors agree in stating the validity of the PS formula to be only statistical, i.e. the existence of the single
halos is not well predicted by the linear overdensity criterion of PS (see in particular Bond et al. 1991).

There are however some exceptions to this general agreement: Brainerd & Villumsen (1992) reported
their MF, based on a CDM spectrum, to be very similar to a power-law with slope −2, different from the
PS formula both at small and at large masses. Jain & Bertschinger (1994), Gelb & Bertschinger (1994) and
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Ma & Bertschinger (1994) noted that, to make the PS formula agree with their simulations (based on CDM
or CHDM spectra), it is necessary to lower the value of the δc parameter as redshift increases. The same
thing was found by Klypin et al. (1995), but was interpreted as an artifact of their clump-finding algorithm.
Recent simulations seem to confirm this trend (Governato, private communication).

Lacey & Cole (1994) extended the comparison to N-body simulations to the predictions for merging
histories of dark-matter halos (see §2.3); they found again a good agreement between theory and simulations.
This fact is noteworthy, as merging histories contain much more detailed information about hierarchical
collapse.

It is opportune to comment on two important technical points about such comparisons. First, the δc

parameters used by different authors as “best fit” values range from the 1.33 of Efstathiou & Rees (1988)
to the 1.9 found (in a special case) by Lacey & Cole (1994). The precise value of the δc parameter is
influenced by the shape of the filter used to calculate the PS, Gaussian filters requiring lower δc values.
Recent simulations tend to give δc ≃ 1.5 (e.g. Klypin et al. 1995) or δc = 1.69 (e.g. Lacey & Cole 1994). If
δc changes with time, a value 1.5 could be good at high redshifts, lowering to 1.7 at low redshifts.

Second, the numerical MF deeply depends on the way halos are picked up from simulations. Typical
algorithms, such as the friend-of-friend or DENMAX, are parametric, i.e. they contain free parameters. For
instance, the frequently used friends-of-friends algorithm defines as structures those clumps whose particles
are separated among them by distances smaller than a percolation parameter b times the mean interparticle
distance. A heuristic argument, based on spherical collapse, suggests a value of 0.2 for b (with this percolation
parameter the mean density contrast of halos is about 180, which is the expected density contrast of a
virialized top-hat perturbation). Obviously, the use of different b parameters leads to different MFs. In
practice, what is obtained in this case is not “the” MF, but the “friend-of-friend, b=0.2” MF. Then, the
numerical MF contains some hidden parameters, which, together with the δc parameter (and the mass
associated to the filter in the Lacey & Cole (1994) paper), makes such comparisons more similar to parametric
fits, rather than to comparisons of a theory to a numerical experiment.

2.3 Excursion set approach

The terminology “excursion set approach” was introduced by Bond et al. (1991), to indicate that the MF
determination is based on the statistics of those regions in which the linear density contrast δl is larger than
a threshold δc (such regions are called excursion sets in the theory of stochastic processes; see, e.g., Adler
1981). The PS procedure is clearly included in this approach. This section presents those works which are
based on the excursion set approach.

2.3.1 Extensions of the PS formalism

As mentioned before, the original PS work was developed within a model in which structures grow from
small seeds, either Poisson distributed or set on a perturbed lattice. The extension of the PS work to more
general and “standard” cosmological settings was due to Efstathiou, Fall & Hogan (1979), who limited their
analysis to power-law spectra and an Einstein-de Sitter background. The first application of PS to a CDM
spectrum was made by Schaeffer & Silk (1985). They “discovered’ the PS MF (the procedure is described
without any reference to the PS paper), complete with its unjustified fudge factor 2, and criticized it in some
interesting points; in particular, they tried to model, on purely geometrical grounds, objects which do not
collapse spherically, like pancakes and filaments.

Starting from 1988, many authors extended the PS approach in many directions, trying to understand
why it appeared to work, in spite of its heuristic and not fully satisfactory derivation. The situation in those
years is reviewed in Lucchin (1989). Just one year before, Kashlinsky (1987) tried to determine the 2-point
correlation function of structures, collapsed according to the PS prescription. Martinez-Gonzalez & Sanz
(1988a) performed similar calculations with a different method, while Martinez-Gonzalez & Sanz (1988b)
attempted to determine the luminosity function of galaxies of different morphological types by means of
an approach which was intermediate between the PS and the peak one, described in §2.4. Lucchin &
Matarrese (1988) formulated a PS MF for the case of non-Gaussian perturbations. Note that, non-Gaussian
perturbations can be both primordial and arise as a natural result of gravitational dynamics: the results of
Lucchin & Matarrese (1988) indirectly introduced some dynamics in the MF theory. Lilje (1992) and Lahav
et al. (1991) extended the PS result to open Universes and to flat Universes with a cosmological constant.
Zhan (1990) changed he PS procedure by taking into account the correction to the background density given
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by the initial density contrast; as a matter of fact, such a correction is negligible if the initial time is small.
Schaeffer & Silk (1988a) used the PS procedure to justify the presence of some small-scale power in the
HDM cosmology; in fact, the use of Gaussian smoothing causes some large-scale power to be spread toward
small scales. Again Schaeffer & Silk (1988a,b), and Occhionero & Scaramella (1988) applied the PS formula
to get many cosmological predictions on collapsed structures. Later on, the PS MF became a standard tool
in cosmology, some of its applications will be described in Chapter 5.

2.3.2 The cloud-in-cloud problem

As mentioned in §2.1, a region which is not predicted to collapse at a scale can be included in a larger-scale
collapsing one; this is not taken into account by the PS formula. Although the name cloud-in-cloud was
given by Bardeen et al. (1986), the first one to recognize and solve this problem was Epstein (1983, 1984).
Schaeffer & Silk (1988a) addressed the problem, reaching the correct conclusion that, if Gaussian smoothing
is used, the cloud-in-cloud problem is not severe at large masses. The cloud-in-cloud problem was again
recognized and solved independently by Peacock & Heavens (1990) and by Bond et al. (1991) (see also the
discussion in Efstathiou 1990). Their conclusions were in agreement with those of Epstein (1983).

The cloud-in-cloud problem has origin in the following inconsistency of the original PS procedure. A
collapse prediction is given to any point (of the Lagrangian space; see §1.2.5) for any resolution Λ; in other
words, a whole trajectory in the δl–Λ plane is given to any point, as in Fig. 2.2. Such trajectories start
from 0 at Λ=0 (vanishing resolution implies complete smoothing, and then vanishing density contrast), then
wander around the plane, eventually upcrossing or even downcrossing the threshold line δl = δc. When a
trajectory lies above the threshold, the point is assumed to be part of a collapsed region of radius R′ ≥ R(Λ);
it is clear that the size R′(Λ′) of the formed structure is connected to the point Λ′ of first upcrossing of the
trajectory. On the other hand, when a trajectory downcrosses the barrier at a resolution Λ′′, the point is
interpreted as not included in any region of size > R′′(Λ′′) (R decreases with increasing Λ), which is clearly
in contradiction with what stated above.

To solve the cloud-in-cloud problem, a point whose trajectory has experienced its first upcrossing of the
threshold line has to be considered as collapsed at that scale, regardless of its subsequent downcrossings.
This can be done as follows: an absorbing barrier is put in correspondence with the threshold line, so as
to eliminate any downcrossing event (Bond et al. 1991). Alternatively, a non-collapse condition can be
formulated as follows: a point is not collapsed at Λ if its density contrast at any Λ′ < Λ is below the
threshold (Peacock & Heavens 1990).

The mathematical nature of the problem, and the resulting MF, strongly depend on the shape of the
filter. For general filters, trajectories are strongly correlated in Λ, and then all the N-point correlations
of the process at different resolutions have to be known to solve the problem. However, if the smoothing
filter sharply cuts the density field in the Fourier space, then independent modes are added as the resolution
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changes, and the resulting trajectories are Gaussian random walks. Such kind of filter is commonly called
sharp k-space filter; it will be referred to as SKS filter throughout the text.

In the SKS case, the problem is suitably solved within the diffusion framework proposed by Bond et al.
(1991). Random walks, which are a particular type of Markov processes (in stochastic language, they are
Wiener processes), are characterized by independent increments: if dδl(Λ) is the increment of the process at
Λ, then

〈dδl(Λ) dδl(Λ
′)〉 = δD(Λ − Λ′), (2.7)

where δD is the Dirac delta function. The PDF of the δl values can then be found as the solution of a
Fokker-Planck equation:

∂

∂Λ
Pδl

(δl; Λ) =
1

2

∂2

∂δ2
l

Pδl
(δl; Λ). (2.8)

If an absorbing barrier at δcis inserted, then this equation has to be solved with the constraint that the
solution P noup

δl
(δl; Λ) always vanishes at δ=δc. This solution is found and discussed in §4.2. The integral MF

can be written as:

Ω(< Λ) = 1 −
∫ δc

−∞

P noup
δl

(δl; Λ)dδl, (2.9)

and this turns out to be exactly equal to the PS formula, including the fudge factor 2. Notably, Epstein
(1983) arrived to this same result by considering a cosmological model analogous to that of the original
PS work, namely Poisson distributed seeds in a flat Universe. His procedure, while formally different, is
equivalent to the diffusion problem with SKS smoothing.

Non-SKS filters change the results considerably; Fig. 4.10 (§4.3) shows the deep difference between
SKS and Gaussian trajectories. To find P noup

δl
(δl; Λ), all the N-point correlations of the δ(Λ) process have

to be considered, and the problem becomes mathematically intractable. Qualitatively, the stability of the
trajectories has the consequence that, if a trajectory is just below the barrier, it cannot easily jump above it
as a result of noise. As a consequence, the PS formula without the factor 2 is recovered at the large mass end
(as suggested by Schaeffer & Silk 1988a), while the small mass part is characterized by different, spectrum
and filter dependent slopes. Anyway, both Peacock & Heavens (1990) and Bond et al. (1991) have proposed
reasonable and successful procedures to approximate the MF; the procedure by Peacock and Heavens will
be described in detail in §4.3.

Recently, in a paper by Jedamzik (1996), it was claimed that the solution of the cloud-in-cloud given
by Bond et al. (1991), in the SKS case, is wrong. Jedamzik analyzed the problem by means of a different
formalism, which is, as a matter of fact, very similar to that proposed by Peacock & Heavens (1990). However,
because of a technical mistake, Jedamzik’s claim is not correct; this was shown by Yano, Nagashima & Gouda
(1996).

A possible inconsistency of the diffusion model is the following: the linear density contrast δl, which
is of order one, can easily become smaller than −1, which would imply negative mass densities. To avoid
this, Porciani et al. (1996) put either a reflecting or an absorbing barrier at δl = −1; their result was an
increase of large mass objects and a dramatic cutoff at small masses, at a second mass scale, different from
M∗. In practice, such a second barrier was put to understand the possible effects of the introduction of
non-Gaussianity (which avoids δl < −1) in the diffusion formalism.

Another direct way to solve the cloud-in-cloud model is to construct Monte Carlo realizations of the
initial density field, and then apply some multi-scale algorithm of clump identification. Two models of this
kind have been proposed, the “block model” by Cole & Kaiser (1988), and that of Rodriguez & Thomas
(1996). Such models have the advantage of a satisfactory treatment of the geometry of collapsed regions
in Lagrangian space, but are somewhat limited in resolution and do not provide analytical formulae for the
MF. Anyway, they are dramatically faster than an N-body simulation.

2.3.3 Merging histories

Merging histories are an important piece of information in the formation history of dark matter objects.
They are a natural outcome of MF theories: a mass point, found in an object of mass M at a given time, will
be found in another, more massive object at a subsequent time; from the conditional probabilities connected
with such events it is possible to construct the statistics of accretion and merging histories of collapsed
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structures. This was attempted first by Carlberg (1990), whose results are in contradiction with more recent
works outlined in the following. Bower (1991) constructed merging histories by using the PS formalism,
obtaining the same results as that obtained by means of the diffusion formalism, which are now reported.

Bond et al. (1991; see also Efstathiou 1990) proposed to use an extension of the diffusion formalism, with
two absorbing barriers, to determine the merging histories. Following this suggestion, Lacey & Cole (1993)
developed an analytical framework: the position of the absorbing barrier changes with redshift according to
(in an Einstein-de Sitter background)

δc(z) = δc(z = 0)(1 + z). (2.10)

Then, the upcrossing history of a SKS trajectory above two barriers at different positions is interpreted as
a point mass belonging to two structures of different mass at different times. The conditional probability of
such events is just:

P (δl = δc(z
′), Λ′|δl > δc(z), Λ)dΛ′ =

(δc(z
′) − δc(z))

(2π)1/2(Λ′ − Λ)3/2
exp

[

− (δc(z
′) − δc(z))2

2(Λ′ − Λ)

]

dΛ′, (2.11)

with Λ′ > Λ, and δc(z
′) > δc(z).

To describe the accretion history of an object, it suffices to lower the barrier in a continuous way, and
follow the position in Λ of the first upcrossing point: if this performs a discontinuous jump (which happens
when the trajectory goes down and then up again), the object containing the mass point considered suffers a
discontinuous merging with a structure of comparable size, while if the point moves continuously the object
is just accreting material. It is clear that, if the trajectory is a random walk, the first upcrossing point
will always perform discrete jumps; continuous accretion will be recognized only if an (arbitrary) minimum
resolution step is fixed.

Lacey & Cole (1993) also proposed a Monte Carlo approach to simulate ensembles of formation histories,
based on realizing a large number of random walks. Their Monte Carlo method for simulating merging
histories is commonly used to model the formation of virialized galactic halos, in which gas dynamical is
inserted “by hand”. Such Monte Carlo models of galaxy formation will be discussed in §5.1.2. As a matter
of fact, they found a weak inconsistency in their formalism (a probability density going slightly negative),
probably caused by the simplicistic mass assignment, Eq. (2.3). As mentioned in §2.2, the same authors
(Lacey & Cole 1994) compared their results to N-body simulations, finding an overall satisfactory agreement.

Finally, Sheth (1995,1996) obtained a complete analytical description for the merging histories of objects
formed from a Poisson distribution of seed masses, the problem analyzed by the original PS paper. The
resulting MF has turned up to be the same as the distribution function proposed by Saslaw & Hamilton
(1984).

2.3.4 Space correlations

If spherical collapse is considered, and if top-hat smoothing is consistently used, then the density contrast in
a point is just the mean density contrast over a sphere, so that if that point is predicted to collapse, all the
points contained in the sphere are going to collapse. Then, the collapse condition of a point is not simply
that of having a density contrast, smoothed on the scale R(Λ), larger than the threshold δc, or, in other
words, of being at the center of a collapsing region, but that of being at a distance smaller than R from a
point whose smoothed density contrast is larger than δc, or, in other words, of being embedded in a collapsing
region. In Monaco (1996a,b) I have called such reasoning global interpretation of the collapse time.

This point was already contained in the surprising paper by Epstein (1983), who considered points
embedded in both spherical and non-spherical regions. More recently, Blanchard, Valls-Gabaud & Mamon
(1992) and Yano et al. (1996) proposed the same argument. The former authors concluded that the
resulting MF changes at the large mass end, but is just slightly flatter than the PS one at small masses.
The latter authors addressed the problem by explicitly introducing the two-point correlation function into
the collapse condition (they used the formalism proposed by Jedamzik 1996). They concluded, in agreement
with Blanchard et al. (1992), that this new element does influence the large mass part of the MF, while the
small mass part is very weakly affected.

More recently, Betancort-Rijo & Lopez-Corredoira (1996) explicitly tried to determine the distribution of
sizes of excursion sets, thus giving an important contribution to the treatment of the geometry of collapsed
regions in Lagrangian space; however, their procedure is valid only for high (> 2σ) thresholds. In agreement
with the authors cited above, they adopted the global interpretation of collapse times, by adding to the
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excursion sets a whole strip of width R, thus containing all the points which are going to be included into
collapsed regions. They again obtained a mass function with many more massive objects at large masses,
probably too massive to agree with N-body simulations. They concluded that the global interpretation
cannot be applied to typical points of the Lagrangian space, while it can probably be applied to peaks.
Anyway, their results can be used to obtain an analytical description of the block model proposed by Cole
& Kaiser (1988).

2.4 Peak approach

An idea which traces back to Doroshkevich (1970) is to suppose that structures form in the peaks of the
initial density field. This idea became a standard paradigm in the framework of biased galaxy scenarios,
discussed in §1.1: Kaiser (1984) noted that high-level peaks show an enhanced correlation with respect to
the underlying matter field, a fact which provided an explanation for the large correlation length of clusters
with respect to galaxies, and gave freedom to tune the normalization of the CDM model to reproduce the
large-scale distribution of galaxies. Peacock & Heavens (1985) and Bardeen et al. (1986) calculated a
number of statistical expectation values for the peaks of a Gaussian random field, as the number density of
peaks of given height. This quantity seemed suitable to determine a peak MF, but two important problems,
recognized by Bardeen et al. (1986) (who did not attempt to determine an MF from the peak number
density) hampered such a determination: (i) it was not clear which mass had to be assigned to a peak; (ii)
the peak number density was based on the initial field smoothed at a single scale, so the peak MF suffered
from the same cloud-in-cloud problem (the peak-in-peak problem) as the PS one.

The excursion set and peak approaches are somewhat complementary. In fact, excursion sets are effective
in determining the total fraction of collapsed mass, and then the global normalization, but are not accurate
in deciding how the collapsed mass fragments into clumps, i.e. to count the number of objects formed. On
the contrary, the peak approach clearly determines the number of formed objects, but does not determine
the mass to be associated with the structures, and hence the global normalization.

A peak MF can be formulated as follows. Let’s denote by npk(δl; Λ) the number density of peaks with
linear density contrast δl (per unit δl interval); the initial field is assumed to be smoothed at a resolution
Λ. Then, if Mpk(δl, Λ) is the mass associated to the peak, and if the M variable is used in place of Λ (the
uncertainty in the Λ → M relation can be absorbed in the Mpk definition) the fraction of collapsed mass
can be written as:

Ω(> M) =
1

ρ̄

∫ ∞

δc

dδlnpk(δl, M)Mpk(δl, M), (2.12)

where δc is a density threshold for the peak. By using the same “golden rule” as in the PS approach (Eq.
2.4), one obtains:

n(M)dM =

∣

∣

∣

∣

d[npk(δc; M)Mpk(δc, M)]

dM

∣

∣

∣

∣

dM. (2.13)

As a matter of fact, there is not a general agreement on the actual validity of the peak paradigm.
From the theoretical point of view, structures are not predicted to form in the peaks of the initial field; for
instance, according to Zel’dovich approximation, structures form in the peaks of the largest eigenvalue of
the deformation tensor. Then the peak paradigm can not be valid in general, except for the highest peaks.
Some numerical simulations (Katz, Quinn & Gelb 1993; van de Weygaert & Babul 1994) have shown that
galactic-size peaks often disrupt or merge with larger structures, as a result of tidal interactions with external
structures. Manrique & Salvador-Solé have argued that such results are due to the lack of correction for the
peak-in-peak problem. On the other hand, Bond & Myers (1996b) have found their peak-patch structures
(see §2.4.2), which account for the peak-in-peak problem, to represent well N-body structures.

2.4.1 The peak mass

The first to use the peak MF, with Mpk given by the mass inside the filter (and independent of δc), were
Carlberg & Couchman (1989), who compared it with their N-body simulations, finding a good agreement;
however, the peak MF is not much different from the PS one in the range tested by those simulations.
Besides, Bond (1989) proposed an analogous formula to model the MF in a biased CDM scenario.
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Alternative, more motivated expressions for the mass of peaks were proposed by a number of authors.
Peacock & Heavens (1985) modeled the peak as a triaxial ellipsoid, and estimated its mass by means of the
volume of the ellipsoid within δl > 0. Following a suggestion by Bardeen et al. (1986), Hoffman (1988)
and Ryden (1988) determined the mass of the peak as that contained within the radius at which the mean
density profile equals its dispersion. Colafrancesco, Lucchin & Matarrese (1989) also modeled the peak as an
ellipsoid, and estimated its mass by means of the volume inside the ellipsoid surface with density larger that
a given threshold. Finally, Peacock & Heavens (1990) estimated the mass of a (Gaussian-smoothed) peak
as that contained by a sphere which produces the same variance as that obtained by a top-hat smoothing.
They also noted that a peak mass ought to satisfy the constraint of a global normalization of the MF.

All these reasonable definitions give rise to different MFs. To decide which mass assignment is correct,
two things ought to be done: (i) the peak-in-peak problem ought to be solved, and then (ii) the mass
assignments ought to be compared to N-body simulations. Attempts in this direction are reported in next
subsection.

2.4.2 The peak-in-peak problem

A point which is a peak on a given scale can be part of a larger-scale (and larger mass) peak; as in the
diffusion formalism, real structures can be connected to those peaks whose density contrast just upcross a
given threshold when Λ reaches a given value (and then are not included in a larger peak). A first heuristic
solution of the peak-in-peak problem was given by Peacock & Heavens (1990), with a method very similar to
that used to solve the cloud-in-cloud problem with non-SKS filters. Appel & Jones (1990) calculated the MF
by means of the fraction of peaks whose height became smaller than the threshold when the smoothing scale
increases (and then Λ decreases), an event which is analogous to the upcrossing in the diffusion formalism.
This nearly solved the peak-in-peak problem, but still some small mass peaks were found inside large mass
ones. This can be explained as follows: Appel & Jones used Gaussian filtering, so the δ(Λ) trajectories
corresponding to the peak points were quite stable (see §4.3); as a consequence, downcrossing events were
quite rare and could happen only at large resolution. They assigned to their peaks the mass contained by
the filter at the scale at which the peak disappeared; note how this definition coincides with the global
interpretation of the collapse time. Moreover, they did not check the overall normalization of their MF.

Following and extending the suggestions by Appel & Jones (1990), Manrique & Salvador-Solé (1995,1996)
constructed a confluent system formalism to describe the formation history of peaks. As in Appel & Jones,
they considered those peaks which go below the threshold at a given scale, but added the condition of not
being included in any larger-scale peak. To their peaks they associated a mass proportional to that of
Appel & Jones; the proportionality constant was then fixed to guarantee the overall normalization. They
constructed δ–Λ trajectories for the peak points (correctly following their motion in Lagrangian space as
Λ changed), which could be interpreted as merging histories for the peaks. A relevant point is that such
merging histories make a clear difference between continuous accretion (the peak remains well defined) and
discontinuous merging (some peaks are destroyed, a larger peak forms); this is at variance with Lacey &
Cole (1993), who could only distinguish between merging with small and large clumps. In my opinion, this
difference is due essentially to the use of different filters (Gaussian for Manrique a& Salvador-Solé, SKS for
Lacey & Cole), rather than to a difference between the peak and excursion set approaches; moreover, as
Manrique and Salvador-Solé have recognized, accretion is in practice merging with small-mass halos, and a
physical difference between the two events can be seen only in the effects that merging has on the internal
dynamics of structure. As a final remark, Manrique & Salvador-Solé (1995) found their MF to be very
similar to the usual PS one, but only if quite a large threshold (as large as 6 or more) is used.

Finally, Bond & Myers (1996a,b,c) developed a Monte Carlo extension of the peak formalism, called peak-
patch formalism. They identified structures by considering peaks of an initial field, filtered on a hierarchy
of scales. They identified the patch, which is going to collapse with the peak, as the matter contained by
a homogeneous ellipsoid which can collapse along its three axes. The peaks were then moved according to
Zel’dovich approximation. This formalism has a number of merits, as it correctly takes into account a number
of important dynamical event, as the effect of the shear on collapse dynamics (through the ellipsoidal model,
described in §3.2); moreover, it has been found (Bond & Myers 1996b) to reproduce correctly the structures
present in N-body simulations, but this time not only from a statistical point of view. This method is then
able to generate Monte Carlo object catalogs in a faster way than N-body simulations, but is too complex
for an analytical or semi-analytical treatment.
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2.5 Dynamical models

Both the excursion set and the peak approaches agree in identifying collapsed structures as those regions
whose linear density contrast exceeds some threshold. But linear theory is not suitable to follow the com-
plicated behavior of collapsing matter; spherical collapse, on the other hand, neglects important elements
such as the role of tides. Such simplifications have been seen in §1.3 to lead to oversimplified and misleading
arguments. A number of authors have tried to insert elements of realistic dynamics in the theoretical MF.
Such attempts are reviewed in the following.

2.5.1 PS-like approaches

Some authors have inserted elements of realistic dynamics in the MF problem by extending the original PS
approach or the diffusion or the peak one. The already cited paper by Lucchin & Matarrese (1988) can
be considered as an attempt in this direction: they inserted non-Gaussianity of dynamical origin in the PS
procedure, with the result of moving the exponential cutoff toward larger masses. Porciani et al. (1996)
justified their introduction of a reflecting (or absorbing) barrier at δl = −1 as a trick to introduce some
non-Gaussianity of dynamical origin in the diffusion formalism: indeed, the negative density problem would
be avoided if the true non-Gaussianity of the evolved field were properly taken into account. Their result
was again an increase of large-mass objects, together with an interesting low-mass cutoff.

The peak-patch formalism by Bond & Myers (1996a), described above, is also characterized by a more
realistic description of the dynamical evolution of peaks, even though structures are always identified through
the peaks of the linear field. Other determinations of the MF were proposed by Henriksen & Lachièze-Rey
(1990), where collapsed regions were identified by means of correlated velocity structures, and by Newman
& Wasserman (1990) and Bernardeau & Schaeffer (1991), who related (in quite different ways) the MF to
the correlation properties of the matter field.

Finally, Monaco (1995) constructed a MF in a PS-like approach, based on realistic collapse time estimates,
found by means of extensions of the Zel’dovich approximation, and by the use of the homogeneous ellipsoid
collapse mode. Again, dynamics led to the prediction of more large-mass objects. This work will be described
in detail in Chapters 3 and 4.

2.5.2 Time scales

One of the problems with the PS approach, reported by Cavaliere et al. (1991), is that it supposes matter
clumps to instantaneously pass from non-collapsed to collapsed, and to be immediately incorporated in a
larger clump. In other words, PS seems to imply vanishing time scales for the formation and destruction of
clumps. As a matter of fact, PS simply does not contain any information on such timescales: the change
of the MF with time is a combination of creation of new clumps, destruction of old clumps and accretion

of mass onto existing clumps (see the discussion reported in §2.4.2: accretion is in practice merging with
very small halos). Such terms cannot be disentangled by means of the PS approach alone, without further
assumptions: for instance, the “static” procedure proposed by Lacey & Cole (1993), which is based only on
statistics, cannot provide a precise definition of formation time (it is arbitrarily, though reasonably, defined
as the time taken by a clump to double its mass).

Cavaliere et al. (1991) proposed a dynamical procedure, based on creation and destruction time scales,
to model the MF. The evolution equation for n(M, t) (without the accretion term) is given by:

∂n(M, t)

∂t
=

n(M, t)

τ+
− n(M, t)

τ−
. (2.14)

At variance with the approaches listed above (with the exception of the formalism proposed by Jedamzik
1996 and used by Yano et al. 1996), the definition of the mass function is implicit, and an evolution
equation is given for it. Note also that this evolution equation is of the kind of a non-conservation equation:
∂n/∂t = S(n(M)), where S is a source term. They proposed the following expressions for the time scales:

τ+ = 2tc(M/Mc)
−Θ/Θ

τ− = 2tc/Θ. (2.15)

Here Mc = Mc(z) is a typical collapsed mass scale, and tc = tc(z) = Ṁc/M is a typical collapse time; both
quantities are redshift dependent, and can be estimated, to within a factor of order one, by means of linear
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theory (as a consequence of self-similarity, if the spectrum is scale-free or gently curved). The formation time
scale exponentially cuts off at masses much larger than the typical mass, while the destruction time scale is
mass independent. The typical behavior of such MF is a power-law at small masses, with slope −2 + Θ/2,
and a modified exponential cutoff at large masses, n(M) ∝ exp(−(M/Mc)

Θ). If Θ = (n + 3)/3 is chosen,
then the typical behavior of the PS mass function is recovered. Finally, accretion of mass at a rate Ṁ can
be inserted in the evolution Eq. (2.14) by adding a term of the form ∂(Ṁn(M, t))/∂M in the left-hand-side
of Eq. (2.14).

Blain & Longair (1993a,b) and Sasaki (1994) used a similar approach, obtaining identical results. They
imposed that the destruction time scale has no characteristic time, then demonstrated that such time scale
is mass-independent, and explicitly derived the formation time scale, by imposing Eq. (2.14) to give the PS
MF as a solution. In particular, Blain & Longair (1993) found a numerical solution, while Sasaki (1994)
derived an analytical expression for the formation time scale.

2.5.3 Kinetic approach

A completely different approach to the MF was proposed by Silk (1978) and Silk & White (1978). Aggregation
(and fragmentation) of collapsed clumps of similar size can be described by means of an aggregation kinetic
equation (Smoluchowski 1916; Ernst 1986), of the kind:

∂n(M, t)

∂t
=

1

2

∫ M

0

K(M, M ′ − M, t)n(M ′, t)n(M − M ′, t)dM ′

− n(M, t)

∫ ∞

0

K(M, M ′, t)n(M ′, t)dM ′. (2.16)

The kernel K(M, M ′, t) gives the probability that two mass clumps of mass M and M ′ coagulate into one
single clump of mass M + M ′. A similar equation holds for the fragmentation of clumps. The first term
in the right-hand-side of Eq. (2.16) gives the number of objects of mass M formed by coagulation of two
clumps of mass M ′ and M −M ′, while the second term gives the number of objects lost by coagulation. The
similarity of this equation to Eq. (2.14) is apparent: both are evolution equations for the MF, and in both
cases the definition of clump is implicit; an important difference is that Smoluchowsky equation is non-linear
in n(M, t).

The behavior of the MF given by Smoluchowsky equation has been reviewed elsewhere (see, e.g., Lucchin
1989; Cavaliere, Colafrancesco & Menci 1991b; Cavaliere, Menci & Tozzi 1994); here I list some main points.
As a general remark, such MFs quickly lose their dependence on initial conditions, their final shape depending
only on the K kernel. Binary aggregations can evolve in two ways, through geometrical collisions or focused,
resonant interactions (Lucchin 1989; Cavaliere, Colafrancesco & Menci 1992). The first mode is prevalent
in environments of moderate density, and can cause a flattening of the MF, due to the coagulation of small
clumps into large ones (Cavaliere, Colafrancesco & Menci 1992; Cavaliere & Menci 1993). It will be shown
in §5.1 that these merging events can explain both the flatness of the luminosity function and the abundance
of blue galaxies at high redshifts.

The second mode is triggered in environments characterized by high densities and velocity dispersions
comparable to the internal dispersions of subclumps, and leads to a merging runaway, i.e. to the formation
of a single large clump whose mass is comparable to that of the whole system; this could correspond to the
formation of cD galaxies through cannibalism of smaller galaxies, or to the erasure of substructure in clusters
(Cavaliere & Menci 1991; Menci, Colafrancesco & Biferale 1993; see also Kontorovich, Kats & Krivitisky
1992). Menci & Valdarnini (1994) have shown, by means of N-body simulations, that both coagulation
modes can be active in large-scale galaxy filaments.

Recently, Shaviv & Shaviv (1993, 1995) have analyzed the Smoluchowsky equation (always in the gravita-
tional context) in a different way; at variance with Cavaliere and coworkers, they found their MF to depend
on initial conditions. Another application of Smoluchowsky equation in a cosmological context is due to
Edge et al. (1990), to explain the evolution of the X-ray luminosity function of galaxy clusters.

As a general remark, such kinetic approaches can describe those aggregation events which take place
between already collapsed clumps. The direct hierarchical (first) collapse of structures remains well described
by a diffusion formalism, like the one proposed by Bond et al. (1991). Cavaliere & Menci (1994) proposed
a formalism, based on Cayley trees, to unify diffusion and aggregations. In practice, aggregation events can
be inserted in a diffusion formalism by means of branching events, i.e. the splitting of a trajectory in two;
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such branching event are controlled by a Smoluchowsky-like equation. This formulation of the gravitational
clustering problem has interesting connections with the works by Sheth (1995;1996).

2.5.4 Adhesion model

The first determination of a mass function, based on a self-consistent realistic dynamical approximation, is
probably due to the works on the adhesion model (see §1.2.6). Within this model collapsed structures can
clearly be identified with shocks in the collapsing medium; further restrictions on (local!) collapse geometry
can select subclasses of collapsed regions, e.g. knots, if one wants to avoid to count filamentary structures.
Some authors compared the predictions of clump formation, as given by the adhesion model, to N-body
simulations, in 1D (Doroshkevich & Kotok 1990; Williams et al. 1991) and 2D (Nusser & Dekel 1990;
Kofman et al. 1992), finding satisfactory agreement.

Vergassola et al. (1994), attempted an analytical estimate of the MF with adhesion, by using and
extending a number of theorems demonstrated by Sinai (see references in the cited paper). They were able
to find the asymptotic dependences of the MF: it behaves exactly like PS at large masses (the exact position
of the typical mass is not determined), but has a different slope at small masses. However, they could not find
the exact normalization of the MF. Cavaliere, Menci & Tozzi (1996) applied their Cayley trees formalism to
the adhesion model, and found that some branching (see the previous subsection) is present in such model;
moreover, they found that the PS behavior is recovered at small masses if only isotropic shocks (knots) are
considered.

2.5.5 Lagrangian perturbations

In §1.2.6 the powerful Lagrangian perturbative formalism was presented. As will be shown later, this
formalism can give reliable dynamical prediction up to OC; as a consequence, it can be used to predict the
OC instant, which is defined as the collapse time. Then, Lagrangian perturbations can be used to construct
an MF fully based on realistic dynamics. At variance with adhesion theory, this dynamical approximation
is of truncated type, i.e. small-scale power has to be filtered out to avoid small-scale multi-stream regions.
Moreover, Lagrangian perturbations show interesting connections with the homogeneous ellipsoid collapse
model, which can also be used to give reliable collapse time estimates, as in Monaco (1995). Such topics
have been addressed in Monaco (1996a,b), and will presented in full detail in the next two chapters.
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Chapter 3

Dynamics and the Mass Function

In chapter 1 a number of dynamical approximations and simplified models of gravitational dynamics were
presented. Such models were based on two equivalent formulations of the gravitational problem, namely the
Eulerian and the Lagrangian ones. Clearly, Eulerian-based approximations, such as Eulerian perturbation
theory, frozen flow or linear potential approximations, are suitable to describe what happens to the matter
field in the real, Eulerian space, no matter where the mass contained in a point comes from. On the other
hand, Lagrangian-based approximations, such as Lagrangian perturbation theory, or adhesion model, can
describe the fate of mass elements which come from a given point, giving both its deformation and its
trajectory. The Lagrangian formulation appears then suitable to analyze a problem such as the MF one,
where the deformation (and the eventual collapse) of a mass element, which starts from a given Lagrangian
position, is wanted. In this sense, the MF is an intrinsically Lagrangian quantity.

In this chapter and in the next a new MF theory, based on Lagrangian dynamics, will be presented.
This chapter addresses the problem, purely dynamical in nature, of the determination of the collapse time
of a generic mass element in a continuous and differentiable (smoothed) density field. §3.1 presents some
attempts to estimate collapse times by means of Zel’dovich approximation; the determinant role of tides is also
discussed. §3.2 Introduces the homogeneous ellipsoid collapse model. §3.3 presents collapse time estimates
based on Lagrangian perturbation theory up to third order; the connection of such theory with ellipsoidal
collapse is analyzed, then collapse times of generic mass elements in Gaussian fields are calculated by means
of Monte Carlo methods. In §3.4 the statistical distributions of the inverse collapse times is determined; this
is the main outcome of this chapter, and will be used in next chapter to determine an MF. Finally, some
important points are discussed in §3.5: the “local” and “non-local” nature of the dynamical approximations
used is discussed, and the “punctual” interpretation of the collapse time estimates is stressed. All the topics
presented in this chapter are contained in Monaco (1995;1996a), and discussed in Monaco (1994;1996c-f).

3.1 Zel’dovich approximation

3.1.1 The role of tides

It has been shown in Chapter 2 that most MF theories proposed in the literature are based at best on
spherical collapse. It is then interesting to understand which kind of dynamical interactions are missed by
this collapse model, and then which is the simplest way to take them into account.

Spherical top-hat collapse is a truly local dynamical approximation: the fate of a spherical perturbation
is determined just by its initial overdensity. In other words, the dynamical role of the whole Universe outside
the perturbation (according to Birkhoff’s theorem) is assumed to be negligible. As mentioned in §1.2.5, it
is possible to construct a mixed Eulerian-Lagrangian system from the evolution equations of fluid elements,
Eqs. (1.35 – 1.37), by decomposing the tensor of (Eulerian) space derivatives of the peculiar velocity u into
an expansion scalar θ, a shear tensor σab and a vorticity tensor ωab (Eq. 1.45). In this way, the following
evolution equation for the density contrast can be obtained (see, e.g., Ellis 1971; here the growing mode b(t)
is used as time variable):

d2δ

db2
+ 4πGρ̄

b

ḃ2

dδ

db
=

4

3

(

dδ

db

)2
1

(1 + δ)
+ (1 + δ)

(

4πGρ̄
b

ḃ2
δ + 2σ2 − 2ω2

)

(3.1)
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Here σ2 = σabσab/2 and ω2 = ωabωab/2 (note that σ2 in this context is not the mass variance). The fact
that shear and vorticity enter through positive definite quantities, with different signs, has two important
consequences: (i) shear always accelerates the collapse of a mass element (see Bertschinger & Jain 1994), (ii)
vorticity always decelerate it. According to linear theory (§1.2.3), any vortical mode is severely damped in
the early gravitational evolution, and this remains true during the mildly non-linear regime, up to OC (at
OC vorticity couples with the growing mode; see Buchert 1992). Then it is reasonable to assume vanishing
vorticity in the present framework. On the other hand, the shear does not vanish in general: it provides the
link between the mass element and the rest of the Universe.

The evolution equation for the shear reads as follows:

dσab

db
+

2

3
ϑσab + σacσcb + 4πGρ̄

b

ḃ2
σab −

2

3
σ2δab = −4πGρ̄

b

ḃ2
Eab. (3.2)

The tensor Eab, already defined in Eq. (1.46), represents the tidal interactions between the mass element and
the rest of the Universe. Then, tides are the relevant dynamical interaction neglected by spherical collapse.

An important remark has to be made at this point. The equations just presented describe the behavior
of a vanishing mass element in a smooth density field; any conclusion, including the calculation of collapse
times, is relative to mass elements; in Monaco (1996a) this has been called punctual interpretation of collapse
times. This is at variance with spherical top-hat collapse, according to which the whole spherical region which
surrounds a given point, whose overdensity is large enough, is going to collapse (global interpretation; see
§2.3.4). To understand the difference between punctual and global dynamical descriptions, the example
already presented in §1.3 can be used: a mass element accreting on a perfectly spherical peak, which is not
a top-hat, experiences spindle collapse (two axes collapse, one axis is shrunk to infinity). For such mass
element, the tidal interaction with the peak is determinant, even though the global symmetry of the collapse
is spherical.

3.1.2 ZEL collapse times

It is useful to find which is the simplest way to introduce tides in the evolution of a mass element. It has
been shown in §1.2.6 that the simplest, realistic approximation of gravitational evolution in the (mildly)
non-linear regime is the Zel’dovich approximation; in the following it will be referred to as ZEL. With ZEL,
the Lagrangian-to-Eulerian mapping is written as follows:

x(q, t) = q − b(t)∇qϕ(q). (3.3)

The evolution of all the kinematic and dynamical quantities relative to the mass element can be found by

means of the ZEL deformation tensor, S
(1)
a,b = ϕ,ab, and Eqs. (1.44). The ZEL deformation tensor is obviously

symmetric, and can then be diagonalized. If λ1, λ2and λ3are its three eigenvalues, ordered according to:

λ1 ≥ λ2 ≥ λ3 (3.4)

(note that, because of Poisson equation, λ1+λ2+λ3=δl), then the Jacobian determinant J of the q → x
transformation, the density contrast δ, the expansion θ and the shear σab evolve as follows:

J(q, t) = (1 − b(t)λ1)(1 − b(t)λ2)(1 − b(t)λ3) (3.5)

θ(q, t) = − λ1

1 − b(t)λ1
− λ2

1 − b(t)λ2
− λ3

1 − b(t)λ3

σab(q, t) = diag

(

λ1

1 − b(t)λ1
− θ

3
,

λ2

1 − b(t)λ2
− θ

3
,

λ3

1 − b(t)λ3
− θ

3

)

δ(q, t) = ((1 − b(t)λ1)(1 − b(t)λ2)(1 − b(t)λ3))
−1 − 1.

In the equation for δ, the initial density contrast has been neglected with respect to one. Note also that
the density reported here is given by the continuity equation. As a matter of fact, it is possible to find
another expression for the density (sometimes called dynamical density, in order to distinguish it from the
continuity density given above), by combining Poisson equation with the equality u = −∇qϕ; valid for ZEL.
It is: δd = −b(t)θ (see, e.g., Shandarin, Doroshkevich & Zel’dovich 1983). This is a symptom of the fact that
ZEL is not a consistent solution of the dynamical problem; on the other hand, the two densities are very
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Figure 3.1: Collapse times with ZEL.

similar at early times, and their difference remains finite at caustics, so it is not important for the present
purposes to use one or the other density.

When b(t) = 1/λ1, caustic formation takes place: the Jacobian determinant vanishes, and all the other
quantities go to infinity. It is then quite reasonable, from the point of view of the mass element, to define
such instant as the collapse time. As already mentioned in §1.3, hereafter collapse will always be defined as
the OC event. Note also that, after OC, the ZEL evolution along the second and third axes is not really
meaningful, as ZEL does not work after OC.

It is then possible to give collapse time estimates for any mass element. Initial conditions are “locally”
given by the three λ eigenvalues, but the evolution is not physically local, as initial conditions contain
non-local information about tides. It is useful to define the following variables:

x = λ1 − λ2 (3.6)

y = λ2 − λ3,

and to use the growing mode b(t) as time variable. Moreover, it is possible to consider regions with linear
initial density contrast δl = 1 or −1, as all the other cases can be obtained by a simple rescaling of b. The
ZEL collapse time is finally given by:

bZEL
c =

3

δl + 2x + y
(3.7)

Fig. 3.1 shows the collapse time curves bc(x, y) for δl = 1 and −1. A problem is soon apparent: in
the spherical case, when x = y = 0, the collapse time is 3/δl, instead of the exact 1.69/δl value. This
discrepancy of nearly a factor of two is easy to understand: ZEL is an exact solution (before OC of course)
in one dimension (see, e.g., Shandarin & Zel’dovich 1989), and is then able to describe the collapse of
pancake-like structures, while it severely underestimates the collapse rate in spherical symmetry.

A way to overcome this problem is to try some simple ansatze for the “true” shape of the collapse time
curve. In practice, a truly realistic collapse time curve will depend not only on the λ eigenvalues, but also on
the values of the density (or potential) field in all the points of (Lagrangian) space. However, as long as ZEL
gives a first-order description of gravitational collapse, it is possible to think to a first-order collapse time
which requires the same initial conditions as ZEL but reduces to the correct spherical value in the relevant
limit. In next subsection it will be shown that the homogeneous ellipsoidal model provides such a collapse
time; in the meantime it is useful to consider simple variations of the ZEL collapse time.

According to Eq. (3.1), spherical (no shear) collapse is the slowest, so a first way to change the ZEL
prediction is to force it not to assume values larger than the spherical one:

ban1
c = min{bZEL

c , 1.69/δl}. (3.8)

36



ansatz 1

0

0.5

1 0

0.5

1

1.5

2

0.5

1

1.5

2

2.5

x

y

bc

ansatz 2

0

0.5

1 0

0.5

1

1.5

2

0.5

1

1.5

2

2.5

x

y

bc

Figure 3.2: Collapse times with the two ansatze.

This bc curve is shown in Fig. 3.2a for δl = 1; it has a plateau, of height 1.69, at small x and y values. On
the other hand, it is unlikely that all quasi-spherical collapses have exactly the same bc value; a systematic
trend of lower bc values at nonvanishing x and y values is more realistic. Such a bc curve can be modeled as
the intersection of the ZEL prediction with a slightly inclined plane which reaches 1.69 at x = y = 0:

ban2
c = min{bZEL

c , 1.69/δl − ǫ(2x + y)}. (3.9)

This curve, with ǫ = 0.2, is shown in Fig. 3.2b. Monaco (1995) contains a more complete discussion of such
ansatze. A further possibility, examined in Monaco (1995), is to insert “by hand” in Eq. (3.1) the shear as
given by ZEL (Eq. 3.5), and then solve the equation numerically; the resulting collapse time is very similar
to that of Fig. 3.2a, but the transition from spherical to ZEL regime is smooth.

An interesting conclusion, which will be found in next chapter, is that the reasonable systematic trend
shown in Fig. 3.2b does influence the large-mass part of the mass function, moving it toward large masses,
even though spherical collapse is recovered for very large overdensities (which are characterized by small x
and y values). In other words, the fact that large, rare fluctuations asymptotically follow spherical collapse
does not guarantee that the “spherical” PS MF (with δc=1.69) is recovered at large masses.

3.2 Ellipsoidal collapse

The convenience in using the homogeneous ellipsoid collapse model resides in the fact that it can easily be
solved by means of a numerical integration of a system of three second-order ordinary differential equations.
One of the advantages of spherical symmetry is that, because of Birkhoff’s theorem, it is possible to introduce
in a background metric a perturbation without influence the rest of the Universe, provided any positive
perturbation is compensated for by an (outer) negative one, such to make the total mass perturbation
vanish. This is necessary to ensure the self-consistency of the problem: the background has to evolve as if
it were unperturbed. This reasoning is not valid any more when introducing a triaxial perturbation in an
unperturbed background: this is going to influence the background, through non-linear feedback effects. To
use ellipsoidal collapse in a cosmological context, the correct strategy is not to try to insert an ellipsoid in a
uniform background, but to extract an ellipsoid from a perturbed FRW Universe.

3.2.1 Homogeneous ellipsoids from a perturbed Universe

A homogeneous triaxial ellipsoid is characterized by its mean overdensity and its axial ratios; it can experience
a global expansion, a deformation or a global rotation. It can be recognized that its properties are analogous
to that of a mass element. As a matter of fact, it is possible to write down evolution equations for a Newtonian
homogeneous ellipsoid (see Peebles 1980, §20), which turn out to be formally equal to the “mixed” Eulerian-
Lagrangian evolution equations for a mass element; for instance, Eqs. (3.1) and (3.2) are recovered. The
reason why this happens can be understood as follows: a homogeneous ellipsoid possesses a “minimal”
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geometric complexity which make its structure analogous to that of a mass element. The fundamental
difference between a homogeneous ellipsoid and a generic mass element is in the role of the potential, a
quadratic form in the first case and a whole random (Gaussian) field in the other.

Following Bond & Myers (1996a), to extract an ellipsoid from a perturbed potential field in a point q0,
it suffices to expand the potential around that point in a Taylor series:

ϕ(q) = ϕ(q0) +
∂ϕ

∂qi
(q0)qi +

1

2

∂2ϕ

∂qi∂qj
(q0)qiqj + . . . (3.10)

The first term is an unimportant constant; the second term produces a bulk motion of the mass element, but
does not influence the internal properties of the ellipsoid. The third, quadratic term is the first one which
is relevant for internal dynamics; it is then possible to approximate the potential as a quadratic form. The
next step is to split the potential into an internal and an external term:

ϕ = ϕint + ϕext (3.11)

(this corresponds to the “extraction” of the ellipsoid). The second term, divergenceless, is supposed to give
external tides. It can be held constant in the evolution of the ellipsoid: it is accurately constant in the linear
and quasi-linear regime, while it becomes negligible, with respect to the internal potential, in the collapse
phase (see Bond & Myers 1996a). The first term, the internal potential, is written as the potential of a
homogeneous ellipsoid.

Notably, initial conditions are just given by the initial values of the second derivatives of the potential;
in its principal frame, they are just the three λ eigenvalues. Then, as anticipated before, the homogeneous
ellipsoid collapse model provides a way to determine collapse times which require the same initial conditions
as ZEL, and obviously reduce to spherical collapse in the relevant limit.

3.2.2 Collapse times

The dynamical variables of ellipsoidal collapse are the three axes ai(t) of the ellipsoid; they are normalized as
the scale factor: ai(t) = a(t) if the ellipsoid is a sphere with null density contrast. Their evolution equations
are:

d2ai

da2
− (2a(1 + (Ω−1

0 − 1)a))−1 dai

da
+ (2a2(1 + (Ω−1

0 − 1)a))−1ai

×
[

1

3
+

δ

3
+

b′i
2

δ + λ′
vi

]

= 0 (3.12)

in the open case (the Einstein-de Sitter case can be obtained by setting Ω0 = 1), while in the flat case with
cosmological constant they are:

d2ai

da2
− 1 − 2(Ω−1

0 − 1)a3

2a(1 + (Ω−1
0 − 1)a3)

dai

da
+ (2a2(1 + (Ω−1

0 − 1)a))−1ai

×
[

1

3
+

δ

3
+

b′i
2

δ + λ′
vi

]

= 0. (3.13)

Note that this time the scale factor a(t) has been used as time variable. The density contrast δ is:

δ =
a3

a1a2a3
− 1, (3.14)

while the quantities b′i and λ′
vi are defined as:

b′i =
2

3
[aiajakRD(a2

i , a
2
j , a

2
k) − 1] i 6= j 6= k (3.15)

(where the RD is the Carlson’s elliptical integral

RD(x, y, z) =
3

2

∫ ∞

0

dτ

(τ + x)1/2(τ + y)1/2(τ + z)3/2
, (3.16)

which can be calculated by means of the routine given by Press & Teukolsky (1990)) and
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Figure 3.3: Collapse times with ELL.

λ′
vi = − a

a0

(

δ

3
− a0λi

)

. (3.17)

Initial conditions can be set by imposing that the ai evolve according to ZEL at early times:

ai ≃ a(1 − aλi) (3.18)

dai

da
≃ 1

a
(ai(a) − a2λi) . (3.19)

These three coupled second-order ordinary differential equations, Eqs. (3.12) or (3.13), can be integrated
by means of standard routines, as the Runge-Kutta one given in Press et al. (1992). The numerical
integration has to be pushed to the singularity, when at least one axis vanishes (and the density diverges). To
do this, it is useful to use logarithmic variables, to have more controlled variations from quasi-homogeneity
to collapse. Moreover, the integration can be divided into two parts: the first is stopped at decoupling,
defined as the instant at which the density starts to increase, while in the second part the density is used
as time variable, and the integration is pushed up to large density values (Monaco 1996a). The overall
precision of the numerical integration is better than 1% for the spherical collapse, but becomes about 8%
for pancake-like collapses. It is to be noted that, in any case, the first collapsing axis is that corresponding
to λ1, the largest λ eigenvalue.

Fig. 3.3 shows the collapse “times” bc of initially overdense (δl=1) and underdense (δl=−1) ellipsoids in
an Einstein-de Sitter Universe (in this case bc = ac). Spherical collapse is obviously recovered at x = y = 0,
while quasi-spherical collapses reasonably show a systematic departure from spherical collapse, as in Fig.
3.2a. The large-shear behavior is similar but not identical to that predicted by ZEL; at variance with what
happens with quasi-spherical collapses, in this range ZEL tends to underestimate the collapse time. Fig.
3.4 shows the bc curve for ellipsoids in an open Universe; this time δl=3 has been chosen, to allow all the
ellipsoids to collapse. As expected, this curve is nearly identical to the one shown in Fig. 3.3a, apart from
an obvious rescaling. Notably, numerical calculations of collapsing ellipsoids in open Universes are affected
by larger errors than that quoted above if the ellipsoid takes a long time to collapse.

The homogeneous ellipsoid collapse model has been used in the cosmological context, besides Bond &
Myers (1996a,b,c), by White & Silk (1979), Peebles (1980), Barrow & Silk (1981), Hoffman (1986), and, more
recently, by Bartlemann, Ehlers & Shneider (1993), who used it to estimate collapse times, by Eisenstein
& Loeb (1995a), who modeled a collapsing structure by means of an ellipsoid, in order to calculate its
angular momentum acquired in the mildly non-linear regime, and by Audit & Alimi (1996). A relevant
difference of such papers with respect to what is proposed here (with the exception of the last one cited) is
that homogeneous ellipsoids are usually assumed to model extended distributions of mass, and not vanishing
mass elements. A consequence of this is that the collapse can be followed even after first collapse: to model
a partial virialization, the collapse of an axis is “frozen” when the axis becomes smaller than a fixed fraction
of the scale factor, and the evolution of the other axes is followed up to the collapse of the third axis (if
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Figure 3.4: Collapse times with ELL, open Universe.

it takes place), which is defined as the collapse time. With this collapse definition, the shear always slows

down the collapse (see also Peebles 1990).

3.3 Lagrangian perturbations

The powerful formalism of (truncated) Lagrangian perturbation theory, presented in §1.2.6, provides a
precious tool for determining collapse times of generic mass elements. The first order term, the Zel’dovich
approximation, has already been analyzed in §3.1; it provides a first determination of collapse times, but
depends on a limited amount of information (the λ eigenvalues). This is, on one hand, a practical advantage,
as will be seen in next chapter, but it is, on the other hand, a physical limitation, as actual collapse times
require much more information (the whole density or potential field). Higher-order perturbative terms add
both dynamical precision and non-local information, at the expenses of an increased complexity in the
calculations.

A relevant difference between usual applications of truncated Lagrangian perturbation theory and what
is proposed here is that Lagrangian perturbations are commonly used to predict the evolution of density
fields in the mildly non-linear regime, up to mass variances slightly larger than one. On the other hand,
Lagrangian perturbations will be used in the following to predict the OC instant; at that time, the various
contributions are all of the same order, so the convergence of the series toward a solution is not guaranteed by
construction. It is then useful to test the convergence of the series in a simple case, such as the homogeneous
ellipsoid collapse; this test will reveal some interesting connections between the two schemes.

3.3.1 Lagrangian perturbations and ellipsoidal collapse

Let’s consider the quadratic potential,

ϕ(q) =
1

2
(λ1q

2
1 + λ2q

2
2 + λ3q

2
3). (3.20)

The λ coefficients are again the eigenvalues of the second derivatives tensor of the initial potential; they
are ordered as in Eq. (3.4). To find the displacement field up to third order, it is necessary to solve the
Poisson equations (1.53). This is not difficult, as the ϕ potential has a very simple form, but the perturbative
potentials can be found in a direct way by using the so called “local forms” given by Buchert & Ehlers (1993),
Buchert (1994) and Catelan (1995).

Local forms are solutions of the Poisson equations which are valid only for restricted classes of initial
conditions; they have the very interesting property of depending only on the values of the potential and its
derivatives in the point considered. As an example, the second order displacement can be written as:

S(2) = [∇ϕ(∇2ϕ) − (∇ϕ · ∇)∇ϕ] + R(2) = S(2L) + R(2). (3.21)
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The vector S(2L) is the local form for S(2); it possesses the right divergence, but is not irrotational in general,
so that a divergenceless, purely rotational vector R(2) must be added to it to have the right irrotational
solution; this vector contains all the non-local information missed by the local form. Analogous expressions
can be found for the local parts of the third-order modes (see the references cited above, and Monaco 1996a).
If the initial conditions fulfill particular conditions, given in Buchert & Ehlers (1993) and Buchert (1994),
then the local forms are irrotational; in this case, they are the solutions of the Poisson equations (1.53).

In the simple case of ellipsoidal potential, it is easy to show that the local forms provide the correct
solutions (see appendix B of Monaco 1996a). This is easy to understand, as ellipsoidal collapse requires
only the λ eigenvalues as initial conditions. Moreover, while the general local deformation tensors depend
on derivatives of the initial potential of order equal to the Lagrangian order plus one, the ellipsoidal defor-
mation tensor can only include second derivatives. Then, the contributions to the deformation tensor of a
homogeneous ellipsoid are:

S
(2E)
a,b = ϕ,abϕ,cc − ϕ,acϕ,bc

S
(3aE)
a,b = ϕ,acϕ

C
,bc (3.22)

S
(3bE)
a,b =

1

2
[S

(2E)
a,b ϕ,cc − S

(2E)
b,c ϕ,ac + ϕ,abS

(2E)
c,c − ϕ,bcS

(2E)
a,c ]

S
(3cE)
a,b = 0;

ϕC
,ab is the cofactor matrix of ϕ,ab. Such ellipsoidal terms can be seen as a truncation of local forms, when

all the more-than-second derivatives are neglected. In other words, ellipsoidal collapse can be seen as a
truncation of Lagrangian perturbation theory, which makes the evolution of a mass element depend only on
the λ eigenvalues.

It is then possible to find the collapse times by solving the equation J(q, bc) = 0; the linear growing
mode is again used as time variable, to parameterize out, with very great accuracy, any dependence on the
background cosmology (see §1.2.6). It is easy to show that all the contributions to the deformation tensor
are diagonal in the same frame, and that in that frame their diagonal components are:

ϕ,11 = λ1

ϕ
(2)
,11 = λ1(λ2 + λ3) (3.23)

ϕ
(3a)
,11 = λ1λ2λ3

ϕ
(3b)
,11 = λ1λ2λ3 + λ1δl(λ2 + λ3)/2.

The other diagonal components can be obtained by rotating the indexes. The J = 0 equation is then:

1 − λibc −
3

14
λi(δl − λi)b

2
c −

(

µ3

126
+

5

84
λiδl(δl − λi)

)

b3
c = 0. (3.24)

µ3 (given in Eq. 1.52) is equal to λ1λ2λ3.
It is interesting to analyze the spherical case, λ1=λ2=λ3, to understand whether Lagrangian perturbations

help in improving the discrepancy of nearly a factor of two between ZEL and the the exact solution. If Eq.
(3.24) is solved in the spherical case up to first, second and third order, the following solutions are obtained:

b(1)
c = 3/δl

b(2)
c = 2.27/δl (3.25)

b(3)
c = 2.05/δl.

For δl=1, the difference from 1.69 is reduced from 1.31 to .36. Then, Lagrangian perturbations, in the
spherical case, show a (not very fast) convergence toward the correct solution; this is encouraging, as spherical
symmetry is the hardest to deal with for this approximation scheme.

The first-order solution of Eq. (3.24) is simply the ZEL approximation discussed above, b
(1)
c = 1/λ1. The

second-order part of Eq. (3.24) gives two solutions; one of these turns out to be the correct one:
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Figure 3.5: Collapse times for overdense ellipsoids.

b(2)
c =

7λ1 −
√

7λ1(λ1 + 6δl)

3λ1(λ1 − δl)
. (3.26)

This solution is real as long as δl ≥ −λ1/6, i.e. only for initial overdensities or small underdensities. The
other solution (with a + in front of the square root) either gives larger bc values, or negative ones, or gives false
solutions which can make even a spherical void collapse. This bad behavior of second-order perturbations
in underdensities had already been noted by Sahni & Shandarin (1996).

It is then necessary to use third order perturbations to correctly handle underdensities. The third-order
collapse time is given by the smallest non-negative solution of Eq. (3.24). It is possible to write down
analytical expressions for the solutions; they are given in appendix B of Monaco (1996a). However, in most
cases it is possible but not straightforward to choose analytically the right solution, and the best way to
address the problem is by means of a computer.

A common feature of second- and third-order solutions is that they correctly make the 1-axis collapse
before the others; this can be explicitly checked for the second-order collapse time by differentiating Eq.
(3.26) with respect to λ1, and verifying that such derivative is always negative, so that the largest axis
always gives the smallest collapse time. An analogous calculation can be performed for the third-order
solution in the case of quasi-spherical collapses, while for general collapses the thing can be verified with
simple computer calculations. This is by itself an indication of convergence, as the first-order prediction
gives the most important contribution to the collapse.

Fig. 3.5 shows the comparison between the numerical solution of ellipsoidal collapse, as given in Fig. 3.3,
and the various Lagrangian predictions, for δl=1; Fig. 3.6 shows the same for δl=−1. Such calculations are
based on an Einstein-de Sitter background. The following conclusions can be drawn:

(i) in the overdensity case, the predictions at increasing Lagrangian orders converge to the numerical
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Figure 3.6: Collapse times for underdense ellipsoids.

value, within the numerical errors quoted in §3.2.2;

(ii) in the initial underdensity case, only the odd Lagrangian orders show a convergence toward the nu-
merical solution, while the second-order prediction gives completely meaningless solutions (the false
solution which makes spherical voids collapse is shown in Fig. 3.6);

(iii) the convergence is very fast for large shears; in this case (for initially overdense ellipsoids), the third-
order solution does not much improve the agreement with the numerical solution;

(iv) initially underdense ellipsoids can collapse if the shear is large enough; in this case the third-order
prediction is always sufficiently accurate.

Calculations performed with other cosmologies fully confirm these conclusions, as expected.
In the large-shear range, Lagrangian predictions are probably more accurate than the numerical integra-

tion, but quasi-spherical collapse times are significantly overestimated. The following formula corrects for
this:

b(nC)
c = b(n)

c − ∆exp(−ax − by) , (3.27)

where n=2,3, and the three coefficients take on the following values:

2nd ord 3rd ord

∆ = 0.580 or 0.364 (3.28)

a = 5.4 or 6.5

b = 2.3 or 2.8 .
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This corrections are applied only when δl > 0; no correction is needed when δl ≤ 0.
As a conclusion, the connection between Lagrangian perturbations and ellipsoidal collapse can be sum-

marized as follows:

• Ellipsoidal collapse can be considered as a particular truncation of the Lagrangian series, when all the
more-than-second derivatives of the initial potential are neglected in the local forms for the deformation
tensor.

• With a small correction for quasi-spherical collapses, Lagrangian perturbations can be used to follow
ellipsoidal collapse in a very fast and accurate way.

3.3.2 General Gaussian fields

When Lagrangian perturbation theory is considered in all its complexity, a purely analytical determination
of collapse times bc of generic mass elements in Gaussian fields is prohibitive even at second order. In fact,

bc is the smallest non-negative solution of the equation J = det(δab + Sa,b) = 0. The S
(1)
a,b and S

(2)
a,b matrices

are symmetric, but in general not diagonal in the same frame. Moreover, it is possible to obtain mean values

for the matrix elements of S
(2)
a,b , but it is discouragingly difficult to obtain the joint PDF of all the matrix

elements of both perturbative matrices, a quantity which would be necessary in order to analytically obtain
the 1-point PDF of collapse times.

It is definitely more convenient to find collapse times by simulating Monte Carlo realizations of Gaussian
fields, with given power spectra, in cubic grids with periodic boundary conditions. Such simulations do
not need to be very extended: even a small, 83 grid can give a sufficient degree of non-locality to allow a
satisfactory determination of collapse-time statistics, at least at the 1-point level. In fact, calculations based
on 163 and 323 grids have given indistinguishable results. The use of cubic grids, with multiple-of-two sides,
allows the use of Fast Fourier Transform (FFT) techniques to solve the Poisson equations for the perturbative
potentials (Eqs. 1.53).

Potential fields ϕ have been simulated, in place of the usual density fields; in the Fourier space, such
fields are just connected by a multiplicative k2 term. Power spectra Pϕ(k) ∝ kn−4, with n from −2 to 1,
have been considered (n is the usual spectral index for the matter power spectrum; see §1.2.7). The fields
have been normalized so as to give a total unity mass variance: Λ = σ2

δ = 1. Analogously to what is usually
done to set up initial conditions for N-body simulations, potential fields have been directly simulated in the
Fourier space, by assigning a Raileigh-distributed modulus and a random phase to any mode. Perturbative
potentials have been found by solving the corresponding Poisson equations in Fourier space, i.e. by dividing
the transform of the source term by k2. Third-order terms have been found to be quite sensitive to numerical
errors, a fact which was already reported by Buchert, Melott & Weiß (1994); as a consequence, third-order
calculations are not expected to be very accurate. This was noted especially in the case of the transverse 3c
term; however, it has been verified that this term can be safely neglected in the calculation; this is again in
agreement with Buchert et al. (1994). The interpretation of this fact is simple: the 3c term, being purely
rotational, is not expected to influence much the density of the mass element.

The following collapse times bc have been calculated for every point: spherical (hereafter SPH), Zel’dovich
(ZEL), second-order (2ND) third-order (3RD) and ellipsoidal (ELL) ones. SPH, ZEL and ELL collapse times
have been calculated analytically: SPH is simply 1.69/δl, ZEL is 1/λ3, while ELL has been calculated by
finding the smallest positive root of Eq. (3.24), and by correcting for quasi spherical collapses as in Eq.
(3.27). 2ND and 3RD collapse times have been found by looking for the first instant at which J < 0, then
using conventional root-finding algorithms to find the accurate value. As a matter of fact, it is possible that
the Jacobian determinant J returns positive just after having become negative; a very small number of such
events, with an incidence of a few times 10−5, were missed by the algorithm used in the calculations.

Ten realizations have been performed for each power spectrum, in order to eliminate the “cosmic variance”
due to limited volume effects. Nearly 105 points have been extracted from every set of realizations. The
behavior of the various collapse times can be understood by analyzing their mutual scattergrams; these
are reported in Figs. 3.7a-j for the n = −2 case (these figures focus on the interesting bc < 3 part of the
scattergrams). Non-collapsing points have been assigned a small negative bc value of −0.1, in order to be
visualized together with the other points. In this way, mass elements which do not collapse according to both
the two predictions of the scattergrams lie in the lower left corner, while mass elements which are predicted
to collapse according to a prediction but not to the other are visible as horizontal or vertical rows of points;
such points will be referred to as discordant in the following. Figs. 3.7 also reports, superimposed on the
scattergrams, the means and dispersions of non-discordant points around the bisector line.

44



Figure 3.7: Scattergrams of the various collapse times.
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Figure 3.8: 2ND–3RD, overdense and underdense points are separated.

The following conclusions can be drawn by analyzing Figs. 3.7a-j:

1. All the results listed below are essentially independent of n; this is exact for SPH, ZEL and ELL (the
PDF of the λ eigenvalues just depends on the mass variance; see Eq. 4.1). Some weak differences in
2ND and 3RD will be quantified in next section. For this reason only the n = −2 case is shown here;
the n = 1 case is shown in Monaco (1996a).

2. As expected, SPH correlates with the other predictions only for the fastest collapsing points, and
it badly overestimates collapse times in general cases; moreover, many points (those with δl < 0!)
are incorrectly not predicted to collapse. Again, realistic (punctual) collapses are always faster than
the spherical one. As a conclusion, spherical collapse is not suitable, even statistically, for describing
gravitational collapse.

3. The ZEL – 2ND and the 2ND – 3RD correlations at small collapse times are increasingly good; this
demonstrates the convergence of the Lagrangian series in predicting the collapse time of the fast
collapsing points. The ZEL – 3RD correlation is similar to that of ZEL – 2ND.

4. The discordant points in the 2ND – 3RD scattergram are either some weak underdensities, for which

2ND does not find any solution, as in the ellipsoidal case, (and then b
(2ND)
c =0), or strong underdensities

which are predicted to collapse by 2ND (and then b
(3RD)
c =0). This is shown in Fig. 3.8, where the

same scattergram is shown separately for initially overdense and underdense points. The same features
are recognizable in the other 2ND scattergrams.

5. As a consequence, third order is necessary for reliably calculating collapse times.

6. 3RD accelerates the collapse of the points with bc > 1 with respect to all the other predictions. Given
the uncertainties connected with third-order calculations, this feature is believed only at a qualitative
level.

7. Both 2ND and 3RD predict the collapse of more points than ZEL. Anyway, it is not clear whether this
feature, which regards points completely outside the convergence range of the Lagrangian series, has
any meaning. Probably Lagrangian perturbations are not a good means for determining the fraction
of collapsed mass in a smooth Universe.

8. ELL shows an encouraging correlation with 2ND and an even better one with 3RD, when bc is small.
In other words, when bc is small the Lagrangian series converges to a solution which tightly correlates
with ELL. This has two implications, namely that the Lagrangian series probably converges to the
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Figure 3.9: Check on the 2ND local and ellipsoidal forms.

right solution, and that ELL can be used to approximate 3RD collapse time. Finally, ELL tends to
overestimate collapse time for bc > 1, slightly with respect to 2ND and strongly with respect to 3RD.
This means that the non-locality not contained in the ELL estimate speeds up the collapse.

The conclusions just presented are strictly valid in the Einstein-de Sitter case, but retain their validity
in more general cosmologies, as long as the weak lack of proportionality of bn(t) with b(t)n is neglected.
However, in the open case collapse times larger than 5/2(Ω−1

0 − 1) imply no collapse, as the growing mode
saturates at that value.

As a final remark, the calculations presented here can be used to test the efficiency of the local truncations
of the Lagrangian series, already discussed in the previous subsection. In particular, they can be used to
decide whether the full local forms, given by Buchert & Ehlers (1993), Buchert (1994) and Catelan (1995),
better reproduce collapse times with respect to the ellipsoidal truncations presented here. This test has been
performed for second-order perturbations: Fig. 3.9 shows the scattergrams of 2ND collapse prediction with
respect to its 2nd-order local and ellipsoidal parts (see Monaco 1996a for further details). It can be seen
that the full local part only causes a modest increase of precision with respect to the ellipsoidal truncation.
It is then concluded that the ellipsoidal truncations presented above can be preferred to the local ones, as
they are much simpler to deal with, at the expenses of only a modest loss of accuracy.

3.4 Inverse collapse times

Collapse times present the disadvantage that the passage from collapse to non-collapse takes place through
infinity. It is more convenient to define the quantity F (q; Λ) as the inverse collapse time of the point q,
when the initial field is smoothed at a resolution (mass variance) Λ:

F (q; Λ) =
1

bc(q; Λ)
(3.29)

F is the basic dynamical quantity needed to construct the MF. In the SPH case F is simply proportional to
the linear density contrast, F = δl/1.69; in the Zel’dovich (ZEL) case F is just equal to λ1.

The quantity F is obviously a non-Gaussian process, and it is not a simple non-linear function of a
Gaussian field (such as, for instance, a lognormal distribution): it is a complicated non-linear and non-local
functional of the whole initial Gaussian perturbation field. As shown in Chapter 2, its 1-point PDF is the
minimal amount of statistical information needed to construct the MF; this point will be further discussed
in §4.4.

The 1-point PDFs for the F processes, relative to different dynamical predictions, can be estimated by
means of the Monte Carlo realizations described in last section. Fig. 3.10 shows such PDFs for two different
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Figure 3.10: Cumlative and differential PDFs of F .
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Figure 3.11: F → x transformation.

spectral indexes, namely n = −2 and 1. Both cumulative and differential curves (the latters in logarithm
scale) are shown: cumulative curves, being binning-free, are less noisy and directly show the total fraction of
mass which lies in a certain range of F , while differential curves better represent the behavior of the various
PDFs, especially at large F values. The following conclusions can be drawn:

1. The SPH curve is quite different from all the others, even in the high F tail, which corresponds to
fast collapsing points. As will be seen again in next Chapter, a systematic deviation of collapse times
from the spherical value strongly influences the statistics of the rare event tail, even though spherical
collapse is asymptotically recovered for the rarest points.

2. In the range F ≥ 1 the ZEL, 2ND and 3RD curves show a monotonic shift toward large F values, which
is larger when passing from ZEL to 2ND than from 2ND to 3RD; this can be interpreted as convergence
toward a solution. This is not true for F < 1; the bad behavior of 2ND in initial underdensities is one
probable cause.

3. ELL and 3RD nearly coincide down to F = 1.2, which corresponds to bc = 0.83, and overall have a
similar behavior; ELL slightly makes more mass collapse at large F values, because 3RD slightly under-
estimates quasi-spherical collapses. The main differences come out in the range where the convergence
of the Lagrangian series is not guaranteed, but both ZEL, 2ND and 3RD have larger medians than
ELL; so ELL probably underestimates the collapses around F = 0.5 or bc = 2. It is to be stressed again
that the behavior of Lagrangian dynamical predictions in this range is not considered very robust.

4. The n dependence can be appreciated in Fig. 3.10. As expected, SPH, ZEL and ELL are independent
of n, while the n dependence of 2ND and 3RD is weak. Moreover, the difference between ELL and
3RD is smaller for smaller n, i.e. when more large-scale power is present, while we would expect the
opposite if the difference of 3RD from ELL were due to non-locality induced from large scales. In the
following, such a weak n-dependence will be neglected.

5. The range F > 1, where the Lagrangian series converges and is in agreement with ELL, corresponds
to more than 10 % of mass. 20 % of mass is found within F > 0.8, where ELL and 3RD are still not
very different, while half of the mass is contained within F ∼ 0.5, below which the various PDFs are
different even qualitatively. Then, the convergence of the Lagrangian series and its agreement with
ELL influences a significant quantity of mass, which corresponds to more than the large-mass tail of
the MF, while the non-robustness of the low-F part is going to affect the power-law, small-mass part
of the MF.

In the following, the ELL and 3RD predictions will be considered, and the PDFs will be mediated over
four the spectral indexes, namely n = −2, −1, 0 and 1. To obtain an analytical fit for the PDFs, it is useful
to find a transformation such as to “Gaussianize” the distributions, i.e. such as to give:
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Figure 3.12: F -PDFs for ELL and 3RD, with Gaussian and complete fits.

PF (F ; Λ)dF = PG(x(F ); Λ)dx(F ) =
1√
2πΛ

e−x(F )2/2Λdx(F ). (3.30)

In practice, the transformed x quantity is such to have its 1-point PDF equal to that of the linear density
contrast. (This does not mean that x is a Gaussian process: its N-point PDFs will not be that of δl). The
x(F ) transformation, for the Λ=1 case shown in Fig. 3.10, can be found by solving the following ordinary
differential equation:

dx(F )

dF
=

√
2πPF (F ) exp

(

x(F )2

2

)

. (3.31)

This equation has been solved with an ordinary Runge-Kutta algorithm. Initial conditions have been set
by imposing x = 0 at the median of the F distribution, and then integrating toward positive and negative
x values. The solutions for ELL and 3RD are shown in Fig. 3.11. At large F values the transformation
curves are simple lines, which implies that the PF (F ) curves are Gaussians (note that the weak rises of
the transformation curves at F ∼ 2 are artifacts of the numerical integration). Such curves are fit by the
following functions:

x(F )ELL = −0.69 + 1.82F − 0.4(erf(−7.5F + 1.75) + 1) (3.32)

x(F )3RD = −1.02 + 2.07F − 0.75(erf(−3F + 1.18) + 1).

These analytical fits are shown in Fig. 3.11; note that the not interesting F < 0.3 part is not well reproduced
by the fits. The first two terms carefully fit the linear parts of the x(F ) curves, while the error functions
reproduce the drop at small F values.

Fig. 3.12 shows the ELL and 3RD PDFs, together with their linear and complete fits. The linear fits
reproduce well the large-mass parts, which are then demonstrated to be accurately Gaussian, but do not
reproduce the pronounced peak present at F ∼ 0.5. Such a peak is well reproduced by the complete fits.
Note also that the ELL PDF is accurately Gaussian down to F = 0.5, while the 3RD prediction starts to
deviate from the Gaussian curve at F = 1.

The x(F ) and PF (F ; Λ) curves given above are relative to Λ=1. Their expression for any Λcan be
obtained by exploiting the following scaling relations:

PF (F, Λ) =
√

ΛPF (F/
√

Λ, 1)

x(F, Λ) =
√

Λx(F/
√

Λ, 1). (3.33)
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As a final technical remark, it has been shown by Bernardeau (1994b) that the shape of the filter does not
influence the statistical properties of the filtered process, as long as filtering is performed in Lagrangian
space.

3.5 Discussion

The MF problem can be formulated in terms of a non-Gaussian process F , representing the inverse collapse
time of a generic mass element. If linear theory with a threshold (or spherical collapse) is considered, F is
proportional to the linear density contrast, and is then Gaussian. More realistic estimates of collapse times
lead to F processes which have a different statistical behavior, even in the rare event tail.

As a matter of fact, the F process is a function of the resolution; this implies that, analogously to what
happened in the spherical case, a whole F (Λ) trajectory is given to any point. It is then natural to think
about applying to the F process F the absorbing barrier formalism, described in §2.3.2, or another of the
approaches described in Chapter 2. However, the complicated non-Gaussian character of the F process can
considerably complicate the calculations with respect to the linear theory case. In particular, an analytical
approach based on the peaks of the F process (such as the confluent formalism of Manrique & Salvador-Solé
(1995)) is essentially hopeless: an analytical description of the peaks of a random field can be obtained only
for Gaussian or closely related fields (see Adler 1981), or for asymptotically high peaks (Catelan, Lucchin
& Matarrese 1988). On the other hand, the simpler excursion set approach requires knowledge of only the
1-point PDF of the F process, which has been obtained above. Section 4.2 will be devoted to showing that,
in the SKS smoothing case, the diffusion formalism can be applied to the F process.

On the other hand, the use of the excursion set formalism has to be carefully justified in the present
dynamical context. As a matter of fact, the collapse times described above predict the collapse of a large
fraction of the mass (see Fig. 3.10), 92% for ELL (just like the Zel’dovich approximation) and even more
for 3RD, even though the exact amount is not considered as a robust prediction; this is at variance with
linear theory, which predicted the collapse of only 50% of mass. As a consequence, an MF calculated by
means of a PS-like approach, i.e. by determining the fraction of mass which is predicted to collapse at a
given scale, will be nearly normalized: the “fudge factor” would be only, 1/0.92 ≃ 1.09, or even more similar
to 1 in the 3RD case. On the other hand, the inconsistency connected to the interpretation of downcrossing
events remain: when a F (Λ) trajectory first upcrosses a barrier, the point is interpreted as collapsed at that
resolution; if the trajectory downcrosses the barrier, the point is interpreted as not collapsed at a larger
resolution, i.e. at a smaller scale. As a point which belongs to a multi-stream region at a scale cannot be in
single-stream regime at a smaller scale, such downcrossing events are not considered as physical, and then,
to avoid them, trajectories are absorbed by the barrier. The thing can be seen from another point of view:
collapse predictions are just approximate, and when different collapse predictions are in contradiction the
one at the smallest resolution is believed.

Another important point regards the punctual nature of the dynamical predictions used. Any collapse
prediction, though resolution-dependent, is just relative to a point of vanishing volume and mass, not to an
extended region of filter-length size. Then, there is no need to introduce spatial correlations in the diffusion
problem, as it happened within the global interpretation of the collapse time (see §2.2.4). On the other hand,
if the underlying potential field is smoothed at a scale R, the excursion sets will have a typical size of order R,
which is the relevant characteristic scale, but the exact relation between R and the size of collapsed objects
in Lagrangian space will be determined by the same spatial correlations which have been avoided in the
diffusion formalism. In other words, the punctual interpretation allows us to neglect spatial correlations in
the diffusion problem, but the same correlations come in play within the geometrical problem of estimating
the size, and then the mass, of the collapsed regions. This point will be deepened in next §4.4.

Two further technical points have to be noted. First, as F is the inverse of a time, the position of the
absorbing barrier has a precise meaning: it has to be put at the (inverse) instant at which the MF is wanted.
In other words, there is no free δc parameter in this MF theory; this is due to the improved dynamical
description of collapse. Second, the shape of the smoothing filter ought to be chosen to optimize the
dynamical prediction; in this sense, Gaussian smoothing is usually suggested (Melott, Pellman & Shandarin
1994; Weiß, Gottlöber & Buchert 1996), but such preference has been found by testing density fields in the
mildly non-linear regime, while in principle collapse predictions could be optimized by different filters.

Finally, I want to make some remarks on the concept of locality in gravitational dynamics, which has
recently been stressed again by Kofman & Pogosyan (1995). From the mathematical point of view, a
continuous system is said to evolve locally if its evolution equations are ordinary differential equations, with
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no spatial derivatives (and if there is no explicit coupling between different points). Indeed, the absence of
spatial derivatives in the evolution system makes any point evolve independently by all the other points,
once initial and boundary conditions have been given. From a physical point of view, a system can be said to
evolve locally if mass elements are not influenced in their evolution by the surrounding matter. Linear theory
and spherical collapse predict local evolution, as the fate of any mass element is decided only by its initial
density. On the other hand, ZEL is able to predict the trajectory and deformation of every mass element
once the λ eigenvalues relative to the point are given, so that the evolution is local from the mathematical
point of view; but the λ eigenvalues contain non-local information about tides, so that the ZEL evolution
of mass elements is physically non-local. Such non-locality is due to the fact that the density and potential
fields are connected by a non-local Poisson equation.

It is interesting to note that the same reasoning can be applied to Lagrangian perturbation theory at
any order: initial conditions contain non-local information through the perturbative potentials, which are
connected to the initial potential through complicated non-linear and non-local Poisson equations, but,
once the perturbative potentials are known in a given point, the fate of that point can be locally followed,
neglecting the fate of all the other points. Then, Lagrangian perturbation theory describes a dynamical
evolution which is non-local from the physical point of view, but local, and then easy to compute, from the
mathematical point of view. As a further example, N-body simulations follow the dynamical problem in its
full non-locality; as a consequence, all the particle trajectories have to be followed at once, and this makes
such calculations dramatically slower than the “local” Lagrangian perturbation theory.
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Chapter 4

Statistics and the Mass Function

Chapter 3 was dedicated to finding realistic estimates of collapse times of generic mass elements. The
problem of translating such information into an expression for the MF is of purely statistical nature. It
was shown in Chapter 2 that such a statistical problem, in the simple case in which the inverse collapse
time F is proportional to the initial density contrast, has received much attention in the scientific literature.
Two main approaches were identified, namely the excursion set and the peak ones; the first approach was
shown to be easier to manage than the second one, at the expense of a simplified treatment of the geometry
of collapsed regions in Lagrangian space, while the peak approach, whose validity relies on the validity of
the peak hypothesis, better takes into account geometry, at the expense of an increased complexity of the
formalism, especially when trying to include a proper treatment of the peak-in-peak problem.

It is not trivial to extend these approaches to the case in which F is a complicated non-Gaussian process.
In particular, the peak approach seems to be far too complex to be used in this context; even in the Gaussian
case, it is not easy to calculate simple expectation values, such as the mean number of peaks of given height
or their mean shape, and such quantities have never been calculated for non-Gaussian fields, except those
which are simple functions of Gaussian fields (see Adler 1981), or in the case of asymptotically high peaks
(Catelan, Lucchin & Matarrese 1988). The reason for that is that the peak constraint (the condition which
has to be satisfied by a point to be a peak) requires knowledge of spatial correlations. On the other hand,
the simpler excursion set approach only requires knowledge of the 1-point PDF of the process considered,
provided the punctual interpretation of collapse times applies. Anyway, the extension of the excursion set
formalism to a general collapse prediction requires much care.

In §4.1 the MF will be determined by means of a simplified PS-like, single-scale approach, which consists
of estimating the probability of having initial conditions that make the mass element collapse. In §4.2 it
will be demonstrated that it is possible to extend the diffusion formalism of Bond et al. (1991) to the F (Λ)
trajectories, if SKS filters are used. To this aim, a number of concepts from stochastic calculus will have
to be used. Then it will be shown that the diffusion problem can be recast in term of a Wiener process (a
random walk) absorbed by a moving barrier; such problem will be numerically solved and some accurate
analytical approximate formulas, valid at large masses, will be given. §4.3 will be dedicated to the absorbing
barrier problem in the case of Gaussian smoothing: a useful analytical approximation, proposed by Peacock
& Heavens (1990), can be used to calculate the first upcrossing rate. The complex geometry of collapsed
regions in Lagrangian space will be shown, in §4.4, to have a relevant role in the passage from the resolution
to the mass variable. Final remarks are presented in §4.5. All the topics presented in this chapter are
contained in Monaco (1995;1996b), and discussed in Monaco (1994;1996c-f).

4.1 PS-like approach

A first determination of the MF can be obtained by applying the same statistical approach as in the original
PS paper: the fraction of collapsed mass is obtained by integrating, at a given fixed scale, over all initial
conditions which make a mass element collapse before a given time. This determination obviously suffers
from the same cloud-in-cloud problem as the PS one; however, as noted in §3.5, most mass is predicted to
finally collapse by realistic collapse time estimates, so a PS-like MF is nearly normalized, by more than 90%.
It is then natural to suspect that an MF obtained by means of the absorbing barrier formalism can be not
very different from the PS-like one, as only a minor part of the mass, lying in the strongest underdensities,
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Figure 4.1: PS-like n(Λ) curves for ZEL and ansätz 1, compared to the PS one.

has to be redistributed; this mass is not expected to influence the MF in any interesting mass range. In
§4.2 and 4.3 it will be shown under which conditions the PS-like and the absorbing barrier MFs are very
similar; here I just anticipate that the simplified PS-like approach suffices in finding the main features of the
dynamical MF.

Integration over initial conditions requires that initial conditions are specified, and that their joint PDF
is known. In the PS case, where linear theory and spherical collapse were used, initial conditions were simply
provided by the initial density contrast. In the most general case, initial conditions are given by the value of
the density (or, equivalently, of the potential) at every point, so that a direct integration is hard to perform.
An intermediate case is provided by the Zel’dovich (ZEL) approximation, and by the other approximations
which require the same initial conditions, as the ansatze proposed in §3.1 and ellipsoidal (ELL) collapse. In
this case, the joint PDF of initial conditions, the λ eigenvalues, is known (Doroshkevich 1970):

Pλ(λ1, λ2, λ3)dλ1dλ2dλ3 =
675

√
5

8πΛ3
exp

(

− 3

Λ
µ2

1 +
15

2Λ
µ2

)

× (λ1 − λ2)(λ1 − λ3)(λ2 − λ3)dλ1dλ2dλ3. (4.1)

Λ is again the mass variance; µ1 = λ1 + λ2 + λ3 and µ2 = λ1λ2 + λ1λ3 + λ2λ3 are principal invariants of
the ZEL deformation tensor, as defined in Eq. (1.52). It is convenient to express this PDF in terms of the
linear density δl and the x and y variables defined in §3.1, Eq. (3.6); in this case the joint PDF is factorized
into a Gaussian for δl and a joint PDF for x and y:

P (δl, x, y)dδldxdy =
1√
2πΛ

exp

(

− δ2
l

2Λ

)

dδl
225

4

√

5

2π

1

Λ5/2
exp

(

− 5

2Λ
(x2 + xy + y2)

)

× xy(x + y)dxdy = Pδl
(δl; Λ)dδl × Px,y(x, y; Λ)dxdy. (4.2)

The fraction of collapsed mass can then be obtained as follows:

Ω(< Λ) =

∫ ∞

0

dx

∫ ∞

0

dyPx,y(x, y; Λ)

∫ ∞

δc(x,y)

dδl Pδl
(δl; Λ), (4.3)

where the function δc(x, y), which substitutes the δc parameter of PS, is defined as the solution of the
equation:

bc(δc, x, y) = b(t0), (4.4)

where b(t0) is the instant at which the MF is wanted (it will usually be set equal to one). By writing the
function δc as δ0 − f(x, y), where δ0 is the spherical value 1.69 and the positive function f(x, y), vanishing
at the origin, gives the effect of the shear, it is possible to write the n(Λ) function as:
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Figure 4.2: PS-like n(Λ) curves for ELL and ansätz 2, compared to the PS one and with a PS with δc=1.5
and the fudge factor 2; see text.

n(Λ) = nPS(Λ) × I(Λ), (4.5)

where nPS(Λ) is the PS curve, Eq. (2.5), and I(Λ) is a correction term:

I(Λ) =
1

Λ

∫ ∞

0

dx

∫ ∞

0

dy Px,y(x, y) exp

(

− 1

2Λ
f2(x, y) +

δ0

Λ
f(x, y)

)

×
(

1 − 1

δ0

(

f − x
∂f

∂x
− y

∂f

∂y

))

. (4.6)

n(Λ) curves have been calculated for ZEL, ELL, and for the two ansatze presented in §3.1; details of
the calculations are reported by Monaco (1995). Fig. 4.1 presents the n(Λ) curve for ZEL and for the
first ansätz, Eq. (3.8), in which spherical collapse is recovered when ZEL predicts a slower collapse. The
canonical PS n(Λ)curve is shown for comparison; the PS curve has not been multiplied by the fudge factor
of two at this stage, in order to compare the results of the PS-like procedures in the different cases, with no
guarantee of normalization (in Monaco 1995 all the curves were multiplied by two). It can be seen that the
ZEL curve underestimates the number of large-mass1 objects, and gives more intermediate- and small-mass
objects, also thanks to its better normalization. The ansätz curve reproduces the PS one at large masses,
and reduces to the ZEL one at small masses, as expected.

Fig. 4.2 shows the ELL prediction, in comparison with the second ansätz, Eq. (3.9) (with ǫ = 0.2), the
canonical PS curve (without the fudge factor 2, as before) and a PS curve with δc=1.5, representative of
the typical outcome of N-body simulations (and then with the factor 2; see §2.2). Both the ansätz curve
and ELL one predict an overabundance of large-mass clumps with respect to the canonical PS curve: it is
again demonstrated that a systematic displacement of collapse times from the spherical value influences the
large-mass tail of the MF, even though spherical collapse is asymptotically recovered. In particular, the ELL
curve is quite similar to the PS 1.5 curve. It is however to be stressed that this similarity, while encouraging,
has to be taken with care, as it is not clear how the collapsed objects predicted by this theory are related to
the N-body clumps. As a technical remark, this ELL curve has been computed by using the full bc curves
found in §3.2; in Monaco (1995) only the overdense curve was considered, and the ZEL behavior was forced
at large x and y values.

The following conclusions, which will be fully confirmed below, can be drawn:

1. realistic collapse predictions cause an enhanced production of large-mass clumps; the resulting MF is
similar to a PS one with δc = 1.5;

1I freely use the word mass in this context to indicate the large-mass (small Λ) or small-mass (large Λ) part of the MF
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Figure 4.3: PS-like n(Λ) curves for ELL and 3RD, compared to a PS with δc=1.5 and the fudge factor 2;
see text.

2. the fact that spherical collapse is asymptotically recovered for the strongest overdensities does not
guarantee that the “spherical” canonical PS MF, with δc=1.69, is recovered at large masses.

The procedure described above is difficult to apply to Lagrangian perturbation theory at second and third
order, because it is hard to find the joint PDF of the relevant initial conditions, i.e. of the matrix elements
of the perturbative contributions to the deformation tensor. On the other hand, the determination of the
1-point PDF of the (inverse) collapse times, performed in §3.3 though Monte Carlo calculations, implies in
practice an integration of the joint PDF of initial conditions over all the variables minus one. It is then
possible to calculate a PS-like MF in the following way:

Ω(< Λ) =

∫ ∞

Fc

dF PF (F ; Λ). (4.7)

Fc is the inverse of the time at which the MF is wanted (again set to one for simplicity). Fig. 4.3 shows
the ELL and 3RD PS-like curves, again together with a PS curve with δc=1.5 and the fudge factor 2. As
expected, the 3RD curve is similar to the ELL one at large and intermediate masses, but has a different slope
at small masses, where the dynamical predictions are considered not robust. It is also apparent that ELL
predicts slightly more large-mass clumps the 3RD; this is caused by the fact that 3RD slightly overestimates
quasi-spherical collapse times, as shown in §3.3. Finally, both ELL and 3RD are similar to the PS 1.5 at
large and intermediate masses.

4.2 The diffusion formalism: sharp k-space smoothing

In the excursion set approach, and within the punctual interpretation of the collapse time, the cloud-in-cloud
problem can be solved with the absorbing barrier formalism proposed by Bond et al. (1991) (and implicitly
by Epstein 1983 and Peacock & Heavens 1990). As explained in §2.3.2, these authors showed that, if sharp
k-space (SKS) filtering of the initial field is used, the δl(Λ) trajectories are random walks, and the problem
can be reformulated as the diffusion of a Wiener process, absorbed by a barrier at δc. It is not trivial to
understand whether this formalism can be extended to the case of the complicated non-Gaussian process
F (Λ), i.e. whether the F (Λ) process is a diffusion process; if this were the case, the first upcrossing rate of
F could be found by solving a 1D Fokker-Planck equation. It will be numerically shown in this section that
this is the case.
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4.2.1 A Fokker-Planck equation for F

It is necessary to introduce, at a qualitative level, a number of concepts from stochastic calculus, some of
which were already mentioned in §2.3.2. All the definitions and theorems presented in this sections can
be found in many textbooks; I make reference to Arnold (1973), an introductory textbook on stochastic
calculus, and Risken (1989), a textbook on the Fokker-Planck equation. A general process ξ(Λ) is said to
possess the Markov property if its history at any given resolution Λ′ > Λ is determined just by its value at
Λ, and is independent of its past history. In more precise terms, its increments at different resolutions do
not correlate:

〈dξ(Λ)dξ(Λ′)〉 ∝ δD(Λ − Λ′). (4.8)

Note that this definition, and all the ones given below, apply also if ξ is a vector process; in this case, the
proportionality constant can include correlations of the various components of the process at fixed Λ. A
Markov process is called Wiener process if it is Gaussian and if the proportionality constant in Eq. (4.8) is
1, as in Eq. (2.7). The trajectories of a Wiener process are called random walks (this definition follows the
use of Bond et al. (1991), but in Risken (1989) this name is reserved to processes with a viscosity term).
The PDF of a Markov process, Pξ(ξ, Λ), obeys a Fokker-Planck (hereafter FP) equation, provided some
regularity conditions are satisfied (see Arnold 1973 and Monaco 1996b). In this case the process is called
diffusion process; note that some authors reserve this name only to the Wiener process. A FP equation has
the form:

∂Pξ(ξ, Λ)

∂Λ
=

[

− ∂

∂ξ
D(1)(ξ, Λ) +

1

2

∂2

∂ξ2
D(2)(ξ, Λ)

]

Pξ(ξ, Λ). (4.9)

The D functions are called drift and diffusion coefficients; for the Wiener process, D(1) = 0 and D(2) = 1.
The Fq(Λ) process (the subscript q indicating the Lagrangian point of which the collapse time is calcu-

lated) is a non-linear and non-local functional of the initial Gaussian potential ϕ(q; Λ):

F (q, Λ) = Fq[ϕ(q′, Λ)]. (4.10)

It is important to note that F is deterministic and does not act directly on the Λ variable, but just on the
ϕ field at fixed resolution. The potential ϕ can be considered as an infinite-dimensional Wiener process,
any dimension corresponding to the value of the potential in a point. Then, the F process is a non-linear
function of an infinite-dimensional Wiener process. It is useful to consider discrete spaces {qi}, as, e.g., in
N-body simulations; any of the considerations which follow will be valid in a continuum limit. In this case,
the ϕ process is a vector Wiener process of finite (although large) length, and the functional becomes an
ordinary function:

F (q, Λ) → F (qi, Λ) = Fi(Λ)

ϕ(q, Λ) → ϕ(qi, Λ) = ϕi(Λ) (4.11)

Fq[ϕ(q′, Λ)] → Fqi
({ϕ(qj , Λ)}) = Fi({ϕj(Λ)}) .

Then, the MF problem can be recast in terms of a multi-dimensional diffusion process: in fact, as Λ
changes, the point {ϕi}, representing the potential configuration, performs a multi-dimensional random
walk. It then suffices to absorb such a random walk with a barrier defined by the equation:

Fi({ϕj(Λ)}) = Fc. (4.12)

This formulation does not seem easily manageable, but highlights the Markov nature of the problem. In the
Zel’dovich case, the situation is simpler: initial conditions are given by the six independent matrix elements of

the first-order deformation tensor S
(1)
a,b = ϕ,ab, which obviously are six correlated Gaussian Wiener processes.

The diffusion process is then a six-dimensional random walk, which is absorbed by the barrier defined by
(recall that F = λ1 in this case):

λ1(S
(1)
1,1(Λ), . . . , S

(1)
3,3(Λ)) = Fc. (4.13)

On the other hand, the multi-dimensional random walk, in six or in a very large number of dimensions,
can be mapped into an F (Λ) trajectory; as long as the F functional is well-behaved enough, there will be a
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biunivocal correspondence between any upcrossing of the ϕ process above the complicated multi-dimensional
barrier and any upcrossing of the F process above the simple Fc barrier. Then, if the F process were a
Markov (a diffusion) process, the problem could be equivalently formulated in terms of the 1D F process,
with a great gain terms of mathematical simplicity.

The evolution equations for the Fi processes are obtained by means of chain-rule differentiation:

dFi =
∂Fi

∂ϕj
({ϕ})dϕj (4.14)

dϕi = fij(Λ)dWj .

dWj are N independent Wiener processes, and the fij coefficients in the equation for ϕi are such to reproduce
the correct variances and correlations. This is a non-linear Langevin system, and this simple fact, together
with some regularity conditions (the drift and diffusion coefficients have to be defined as suitable averages
of the transition probability; see Arnold 1973) suffices in demonstrating that the whole {Fi, ϕj} system is a
diffusion process, and then admits a FP equation. Then, the MF problem can be reformulated in terms of
the complicated multidimensional {Fi, ϕj} process with the simple F = Fc absorbing barrier.

The fact that each of the Fi processes is a component of a diffusion process does not guarantee that it
is a diffusion process by itself. On the other hand, it is not possible to find a FP equation for Fi by just
integrating out all the other variables from the FP equation for the whole system, as the drift and diffusion
coefficients are not constant, and then can not be taken out from the integration. As a consequence, there
is no immediate reason to believe that a solution of the 1D problem, obtained by treating F as a diffusion
process, would give the correct solution of the multimensional problem for the statistics of the first upcrossings
of F . Nonetheless, this solution of the 1D problem can be considered as an useful ansätz to the true solution,
to be compared a posteriori with a numerical solution of the multidimensional problem. I will show in the
following how to obtain the solution of the 1D problem, and how this solution perfectly describes the actual
first upcrossing rate of F , found by means of the Monte Carlo simulations described in §3.3. Then, it will be
concluded that the diffusion formalism, in the SKS case, can be extended to the F process. This is enough
for the present purposes, but leaves the question open on the possible Markov nature of the F process.

To solve the 1D problem, it is necessary to construct a FP equation whose solution is PF (F ; Λ). Through
Eq. (3.32), given in §3.4, it is possible to transform F into a process x, whose PDF is a Gaussian with null
mean and variance Λ. The FP equation for x is obviously that of a Wiener process:

∂Px(x, Λ)

∂Λ
=

1

2

∂2

∂x2
Px(x, Λ). (4.15)

It is possible from this equation and from the x(F ) transformation to obtain the FP equation for F ; this
is done in Appendix A of Monaco (1996b). However, it is much more convenient to work in terms of the
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Figure 4.5: Moving barrier problem: ELL prediction, linear barrier.

Wiener x process. In this case, it can be seen from Eqs. (3.32) and (3.33) that the fixed barrier at Fc is
transformed into a moving barrier for x.

In conclusion, if SKS smoothing is used, the fraction of collapsed mass, calculated by assuming that F is
a diffusion process, can be found by solving the problem of the diffusion of a Wiener process with a moving
absorbing barrier.

4.2.2 The moving barrier problem

The solution of the fixed barrier problem was found by Chandrasekar (1943): consider Eq. (4.15), subject
to the constraint Px(xc; Λ) = 0 at any Λ, and to the initial condition Px(x, 0) = δD(x). If a negative
image is put in a symmetric position with respect to the barrier, i.e. if the initial condition is changed to
Px(x, 0) = δD(x)−δD(2xc −x), then it is easy to show that the solution P fb

x (x; Λ) (fb denoting fixed barrier)
is:

P fb
x (x; Λ)dx =

1√
2πΛ

[

exp

(

− x2

2Λ

)

− exp

(

− (2x − xc)
2

2Λ

)]

dx. (4.16)

This solution manifestly satisfies the constraint at any Λ; moreover, it makes sense only for x < xc, turning
negative beyond the barrier. Finally, note that no meaningful solution exists for xc < 0, as the trajectories
are all absorbed from the start.
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Figure 4.6: Moving barrier problem: 3RD prediction, linear barrier.

Such procedure does not apply to the moving barrier case. To show this, it is useful to trace the problem
back to the F variable: the barrier is then fixed, but the process has a non-vanishing (and possibly time-
dependent) drift coefficient, which causes the mean value of the process to change with Λ. In this case, any
negative image, put specularly with respect to the barrier, ought to move specularly with respect to the
positive solution, i.e. with a drift of opposite sign, in order to ensure the barrier constraint to be satisfied at
any Λ. Then, the image would not obey the same FP equation as the positive solution, but another equation
with drift of opposite sign.

No analytical solution has been found for the moving barrier problem; some attempts are reported in
Appendix B of Monaco (1996b). It is however possible to numerically integrate the FP equation with a
standard Cranck-Nicholson method, as that described in Press et al. (1992). It consists of a finite-interval
integration; intervals have been chosen as ∆x = 7.5 10−3, ∆Λ = 5 10−5, so that the critical parameter
α = ∆Λ/2(∆x)2, which determines the stability of the calculation, is 0.444; this is small enough to give
precise results. Initial conditions have been assigned by assuming an unperturbed Gaussian for the PDF,
at Λ values small enough that no trajectory has yet met the barrier. The numerical solution of the moving
barrier problem will be denoted as P noup

x (x; Λ).
The absorbing barrier xc(Λ) can be found by setting F = Fc in the transformation Eq. (3.32), generalized

to any Λ by means of the scaling relation (3.33). For the ELL and 3RD predictions, they are:
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xc(Λ) = 1.82Fc − 0.69
√

Λ − (4.17)

0.4
√

Λ(erf(−7.5Fc/
√

Λ + 1.75) + 1) (ELL)

xc(Λ) = 2.07Fc − 1.82
√

Λ −
0.75

√
Λ(erf(−3Fc/

√
Λ + 1.18) + 1) (3RD).

It was recognized in §3.4 that the x(F ) transformation is accurately linear for moderate and large F values.
In this case, the terms in the first lines of Eq. (4.17) are obtained. Such barriers are called linear barriers;
note however that they are not linear in Λ! Fig. 4.4 shows the xc(Λ) barriers: for the ELL prediction,
linear and complete barriers remain very similar up to large resolutions, while in the 3RD case they become
significantly different after Λ=1.5. Then, linear barriers provide a good approximation for the large- and
intermediate-mass range.

In the linear barrier case, the numerical solution has been found to be related to the fixed barrier solution,
found by inserting the moving barrier xc(Λ) into Eq. (4.16):

P noup
x (x; Λ)/P fb

x (x; Λ) = J (x, Λ) = 1 + exp(f(Λ)x + g(Λ)). (4.18)

Figs. 4.5a and 4.6a show, for ELL and 3RD, the numerical and fixed barrier solutions at Λ=1. Figs. 4.5b
and 4.6b show the quantity ln(P noup

x (x; Λ)/ P fb
x (x; Λ)− 1), which is accurately linear up to errors due to the

numerical precision. To find the f(Λ) and g(Λ) functions, it has to be noted that the corrected function,
JP fb

x , has to be precise enough to correctly reproduce not only the numerical curve but also its second
derivative in x and its first derivative in Λ, in order to satisfy the FP equation. Putting this constraint, the
following functions have been found:

f(Λ) = −0.5 + 2.41Λ−1.08 (4.19)

g(Λ) = 2.23 − 4.90Λ−1

for the linear ELL transformation, and

f(Λ) = −0.3 + 2.05Λ−1.13 (4.20)

g(Λ) = 1.15 − 4.25Λ−1

for the linear 3RD transformation. Figs. 4.5c and 4.6c show the numerical J function and their analytical
fits, which appear quite satisfactory.
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Figure 4.8: n(Λ) curves for the 3RD prediction.

The integral MF is:

Ω(< Λ) = 1 −
∫ xc(Λ)

−∞

P noup
x (x; Λ)dx. (4.21)

It is then easy to show that the n(Λ) curve can be written again as:

n(Λ) = nPS(Λ) × I(Λ), (4.22)

where the correction function I is:

I(Λ) =
xc(Λ)

δc
exp

(

−2(xc(Λ) − δc) + (xc(Λ)/δc − 1)2

2Λ

)

J (Λ). (4.23)

Figs. 4.5d and 4.6d show the numerical curves and their analytical approximations, which appear to be
quite satisfactory at large and intermediate masses. The sudden fall of the analytical approximations, which
takes place at moderately large resolutions, is caused by the fact that the barrier turns negative, and then
the fixed barrier solution cannot be used any more; this fact has no relevant meaning.

The numerical n(Λ) curves obtained by using the full barriers are shown in Fig. 4.7 (ELL) and 4.8
(3RD), in comparison with the (numerical) linear barrier solutions and with the PS-like curves of §4.1. In
the ELL case, the two curves start to be different only at small masses, while in the 3RD case this happens
at intermediate masses. In both cases the SKS curve gives, at large masses, roughly a factor 2 more objects
than the PS-like one, just like in the canonical PS case, even though the “fudge factor” in the present case
is not more than 1.09. Then, the justification of the factor 2 by means of the diffusion formalism, in the PS
case, appears just like a fortunate coincidence.

Fig. 4.9 finally shows the (complete) ELL and 3RD curves, in comparison with the corresponding
canonical PS solution of the diffusion problem (with the factor 2). The following conclusions can be drawn:

1. both ELL and 3RD predict more large-mass objects than the canonical PS prediction;

2. both ELL and 3RD predict nearly a factor 3 more intermediate-mass objects;

3. both ELL and, especially, 3RD predict steeper n(Λ) curves at small masses (which means flatter MFs
at small masses); the exact slope depends sensitively on the uncertain particulars of the moving barrier
at large resolutions.

The first conclusion is in agreement with what had been found in §4.1; the second one is worrisome, as
the PS curve agrees well with N-body simulations; this will be solved in next section. Finally, the third
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Figure 4.9: n(Λ) curves with SKS filtering.

conclusion shows how the small-mass part of the MF sensibly depends on the uncertain dynamics of slowly-
collapsing mass clumps. Anyway, the trend of a decrease of small-mass objects, with a corresponding bump
at intermediate masses, goes in the same direction as the findings of Porciani et al. (1996), of a low-mass
cutoff influenced by non-Gaussianity. While their effect is much more dramatic, it is confirmed that a non-
Gaussian F -distribution can somehow introduce a new small-mass characteristic scale, which takes place
when most mass has collapsed (to be more precise, when the non-linear barrier sets in).

Finally, it is necessary to verify whether the solution of the 1D problem, obtained by assuming that F (Λ)
is a diffusion process, gives the correct solution of the multidimensional problem described in §4.2.1. To do
this, the Monte Carlo simulations already described in §3.3.2 have been used. Every realization has been
smoothed by means of a hierarchy of SKS filters, taking care to follow the spacing of the modes of the cubic
grid. To do this, 116 filterings of the 163 grids and 464 of the 323 grids have been performed. For every
filtering, the collapse time has been calculated at every point which had not collapsed at smaller resolution,
thus determining the first upcrossing rate as a function of resolution. Given the limited dynamical range of
the grids, different samples of realizations with different normalizations have been used. For ELL, three sets
of 30 realizations 323, with total mass variances 0.8, 2 and 5 and spectra with n = −2, have been used. The
3RD case is more delicate and time consuming: the 163 realizations have been used in place of the 323 ones,
and four sets of 60 realizations, with variances 0.8, 2, 5 and 12 have been performed. Fig. 4.10 shows the
results of these calculations, compared with the FP curves calculated before (with complete barriers): the
agreement is overall perfect for ELL, very good for 3RD at large masses and good at intermediate masses
(the slight disagreement is too small to be really worrisome). The numerical 3RD curve appears significantly
different from the FP one at small masses, and this is presumably due to the poor fit of the F -PDF given by
Eq. (3.32). However, this disagreement takes place in the range in which the MF theory is not considered
robust, so that an improved fitting of the PDF is considered unnecessary. Finally note how the numerical
n(Λ) curve for 3RD accentuates the small-mass cutoff found in the other cases.

In conclusion, the solution of the 1D problem perfectly reproduces the first upcrossing rate of the F
process in the SKS filtering case. This provides the solution of the MF problem by extending the diffusion
formalism to the F process, and gives precious information on the possible Markov nature of F itself, even
though the explicit demonstration of this remains an open problem.

4.3 Gaussian smoothing

The use of SKS smoothing is only motivated by the fact that it leads to the elegant diffusion formalism,
which allows us to find (semi)analytical solutions even in the case of the non-Gaussian F process. From
a dynamical point of view, Gaussian smoothing is better motivated than the SKS one, as it optimizes
the dynamical predictions, as commented in §3.5. But it is not possible to find exact solutions for the
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Figure 4.10: Numerical and FP n(Λ) curves, SKS filtering.

absorbing-barrier problem in the Gaussian smoothing case, even if F is proportional to δl. In fact, when
Gaussian smoothing is used, the power spectrum is not sharply truncated at a given resolution, so the ϕi(Λ)
processes contain information about what is going to happen at larger resolutions. As a consequence, the
ϕi(Λ) processes lose their Markov property, and the F process can by no means be a diffusion process. This
implies that neither the ϕ-PDF nor the F -PDF obey a FP equation.

This fact can be better understood by looking at some SKS and Gaussian-smoothed trajectories of the
Wiener x process, as shown in Fig. 4.11. SKS trajectories are very noisy, while Gaussian trajectories are
much more stable. Their stability can be also shown as follows; the normalized correlation function of
Gaussian-smoothed trajectories is approximately constant for small increments:

〈x(Λ)x(Λ + ∆Λ)〉
√

〈x(Λ)2〉〈x(Λ + ∆Λ)2〉
≃ Λ

(

1 − 1

2

(

∆Λ

Λc

)2
)

, (4.24)

where Λc is a coherence length equal to:

Λc = 2Λγ(1 − γ2)−1/2. (4.25)

γ is a standard spectral measure (see Bardeen et al. 1986), equal to ((n + 3)/(n+ 5))1/2 for scale-free power
spectra, in which case Λc = Λ

√

2(3 + n). This coherence scale is quite large, especially for large spectral
indexes. In the SKS case the coherence scale vanishes, and the normalized correlation function linearly
decreases with ∆Λ: trajectories are much less correlated.

Note that such a stability, while being a problem from a mathematical point of view, can be considered as
positive feature from a dynamical point of view, as a noisy trajectory corresponds to an unstable dynamical
prediction, which can change much when the resolution changes.

Some consequences of the stability of Gaussian trajectories can be appreciated immediately:

1. Gaussian trajectories cannot easily downcross the barrier once they have upcrossed it, as they need a
resolution change of order Λc to reverse their direction; as a consequence, the resulting MF will reduce
to the PS-like one at large masses, because no or a negligible number of trajectories will have had
time to upcross and then downcross the barrier (note that this conclusion had already been reached by
Schaeffer & Silk 1988a). This is at variance with the SKS case, where an upcrossing trajectory had a
large probability (one half!) of downcrossing the barrier just after having upcrossed it, and this causes
a factor 2 more large-mass objects to be predicted to form.

2. The PS-like integral MF is a lower limit to the true integral MF (Bond et al. 1991), as the PS-like
approach counts the number of trajectories which lie above the barrier at a given resolution, and that
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Figure 4.11: SKS and Gaussian trajectories.

have then been surely absorbed, but does not count al the trajectories which have downcrossed the
barrier. As the Gaussian MF reduces to the PS-like one at large masses, and as less than 10% of mass
has to be redistributed to achieve the correct normalization, the MF with Gaussian smoothing cannot
be very different from the PS-like one; this is at variance with what was found by Peacock & Heavens
(1990) and Bond et al. (1991) in the canonical linear-theory case (the PS-like and Gaussian curves are
rather different), in which half of the mass has to be redistributed.

3. Since the correlation length is larger for larger spectral indexes, the Gaussian n(Λ) curve is expected
to be more similar to the PS-like one for larger spectral indexes.

To rigorously solve the absorbing barrier problem in the Gaussian-smoothing case, all the N-point corre-
lation functions of the process F (Λ) at different resolutions have to be considered; this makes the calculation
prohibitive even in the spherical collapse case. However, some fairly motivated and successful analytical
approximations have been proposed both by Peacock & Heavens (1990) and by Bond et al. (1991); both the
groups agree in stating that the one proposed by the formers is slightly more successful than the others. The
approximation proposed by Peacock and Heavens (hereafter PH approximation) is obtained by assuming
that Gaussian trajectories are a random step process, constant over an interval equal to πΛc ln 2, whose
transition probability can be written as:

P (F, Λ; F ′, Λ′) = δ(F − F ′) if Λ/Λ′ < Λc (4.26)

= P (F, Λ) if Λ/Λ′ ≥ Λc , (4.27)

The probability of never having upcrossed the barrier can be calculated by multiplying over a discrete
number of independent probabilities:

∫ Fc

−∞

P noup
F (F ; Λ)dF =

∏

i

∫ Fc

−∞

PF (F, Λi)dF. (4.28)

By taking the logarithm of the product on the right-hand-side, and by changing it to an integral by means
of a continuum limit, the following integral MF is obtained (see PH, Bond et al. 1991, Monaco 1996b for
details):

Ω(< Λ) = 1 −
∫ Fc

−∞

PF (F, Λ)dF (4.29)

× exp

(

∫ Λ

0

ln

(

∫ Fc

−∞

PF (F, Λ′)dF

)

dΛ′

πΛc(Λ′) ln 2

)

.
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Figure 4.12: Comparison between PH aproximation and Langevin simulations: (a): ELL, n = −2; (b): ELL,
n = −1; (c): 3RD, n = −2; (d): 3RD, n = −1.

Note that the PS-like expression is obtained if the exponential is set equal to one. The PH approximation was
proposed to solve the absorbing barrier problem in the F ∝ δl case. In any case, since the approximation is
based on assuming that Gaussian trajectories have a simple behavior, it can be readily applied, as it stands,
to the non-Gaussian F processes considered here. Expressing the F -integrals in terms of the x variable, the
following expression for the n(Λ) curve is found:

n(Λ) =

[

exp(−x2
c/2Λ)√

2πΛ

(

xc

2Λ
− dxc

dΛ

)

−
∫ xc(Λ)
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Px(x, Λ)dx × (4.30)
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exp
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∫ Λ

0

ln

(

∫ xc(Λ
′)

−∞

Px(x, Λ′)dx

)

dΛ′

πΛc ln 2

)

.

To test the goodness of the PH approximation in the case in which F is given by ELL or 3RD, the
absorbing-barrier problem with Gaussian smoothing can be solved numerically, by simulating a large number
of Gaussian trajectories, and then counting the absorption rate as a function of resolution. Such simulations
can be performed in two ways. The first way is analogous to that used by Bond et al. (1991) (see also Risken
1989): a large number of SKS x trajectories are simulated, then smoothed by means of a Gaussian filter and
finally absorbed by a moving xc(Λ) barrier. Such a procedure is valid provided that true Gaussian trajecto-
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Figure 4.13: Comparison between PH approximation and Monte Carlo simulations; ELL, n = −2.

ries, based on Gaussian smoothed initial potentials, are equivalent to Gaussian-smoothed SKS trajectories.
In other words, such calculations are valid provided smoothing and dynamics commute:

F [ϕ ∗ W (Λ)] ≡ W (Λ) ∗ F [ϕ] (4.31)

The ∗ operator denotes a convolution, and W is the Gaussian window function of width Λ. This is strictly
valid only in the case in which the functional F is linear, i.e. in the linear theory or spherical collapse case.

Bond et al. (1991) compared the results of such calculations to the PH prediction, finding an overall good
agreement, especially in the asymptotic regimes, while the PH formula appeared to slightly overestimate the
height of the main peak. Following them, 50000 SKS trajectories (random walks) have been simulated, in
a resolution range from exp(−4) to exp(4), which has been divided into 2000 steps. Such trajectories have
been smoothed for 100 or 150 Λ values, the exact value depending on the spectral index; finer samplings are
not worthwhile, as Gaussian trajectories are quite stable. The calculations have been performed for n = −2
and −1. For larger spectral indexes, the simulations become difficult, because of the large coherence length
Λc; moreover, the resulting PH n(Λ) curves are very similar to the PS-like ones (whose integral gives a lower
limit to the integral MF, as mentioned before), so it is not very interesting to distinguish between the two.
Fig. 4.12 shows the results for 3RD and ELL:as in Bond et al. (1991), the PH approximation correctly
reproduces the numerical curves, very slightly overestimating them around Λ=1; the asymptotic regimes
are always well reproduced. the numerical curves are always accurate enough to prefer the PH curve to the
PS-like one, especially at small masses.

The second way to generate Gaussian trajectories, analogous to that used by Peacock & Heavens (1990),
is that already used in §4.2.2 in the SKS case: the Monte Carlo realizations of the initial potential are
smoothed with a hierarchy of Gaussian filters, directly calculating the collapse times for each point not
collapsed at smaller resolutions. This kind of calculation has the advantage of not assuming the commutation
between smoothing and dynamics, but is slow and limited in resolution range; it can be used to verify that
the commutation hypothesis made above does not hamper the result found above. Compared with the
SKS calculations, the Gaussian smoothing case has the advantage of not requiring a very fine sampling in
resolution, as trajectories are stable. The ELL case with n = −2 has been considered. Two sets of 30
realizations with different mass variances have been used, to cover a significant range in resolution. The
calculated F (Λ) trajectories have been absorbed, as usual, by a barrier fixed at Fc = 1. Fig. 4.13 shows the
result: the validity of the PH approximation is confirmed.

Figs. 4.7 and 4.8 show, for ELL and 3RD, the resulting PH n(Λ) curves, for n = −2 and 1, compared
to the PS-like and SKS ones; the complete absorbing barriers have been used to calculate the Gaussian PH
curves. The qualitative conclusions given above about Gaussian n(Λ) curves are fully confirmed: they reduce
to the PS-like ones at large masses (then giving roughly a factor two less objects than the SKS curves), and
are overall very similar to them, especially for n = 1. It is then confirmed that a PS-like approach suffices
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Figure 4.14: n(Λ) curves for ELL and 3RD with Gaussian smoothing, compared with a PS with δc=1.5.

in determining the MF, if the Gaussian filter is preferred as more “physical”. Fig. 4.14 shows the Gaussian
curves in comparison with a PS one with δc=1.5. The following conclusions can be drawn:

1. Gaussian curves, just like PS-like ones, give more large-mass objects than the canonical PS prediction
(with δc=1.69).

2. Gaussian curves do not overproduce intermediate-mass objects, as it happened with the SKS curves.

3. The shape of the small-mass part crucially depends on the uncertain particulars of the dynamical
predictions at large resolutions.

4. As in the SKS case, a drop in the number of small-mass objects is observed when the non-linear barrier
sets in.

5. Gaussian curves, just like the PS-like ones, are generally similar to a PS one with δc=1.5; this is true
especially for the ELL prediction.

4.4 From resolution to mass

A general problem with excursion set-based approaches, including the original PS one, is that the geometry
of the collapsed regions (of the excursion sets) in Lagrangian space is not properly taken into account: the
volume of the excursion sets as a function of resolution, and then the mass of structures, is obtained by
means of the reasonable “golden rule” given in Eq. (2.4), here again reported:

Mn(M)dM = ¯̺

∣

∣

∣

∣

dΩ

dM

∣

∣

∣

∣

dM = ¯̺n(Λ)

∣

∣

∣

∣

dΛ

dM

∣

∣

∣

∣

dM. (4.32)

This simple rule assumes that a single mass forms at every resolution: M = M(Λ). Moreover, this mass is
usually assumed to be that included by the filter window (see, e.g., Bond et al. 1991; Lacey & Cole 1993), a
concept which is completely clear only in the spherical top-hat case, in which M = 4π ¯̺R3/3, where R is the
radius of the top-hat filter. From this point of view, the choice made by Lacey & Cole (1994), of considering
the exact proportionality constant between M and R3 as a further free parameter, appears quite reasonable.
Moreover, the same authors (Lacey & Cole 1993) found some “mild inconsistencies”, presumably due to the
oversimplified mass-resolution relation, in estimating the formation time of halos.

In practice, such a golden rule is a reasonable zero-order approximation, which is expected to give the
correct order of magnitude of the mean mass produced at a given resolution. To obtain a more rigorous
resolution-mass relation, the geometry of the excursion sets ought to be properly taken into account. This
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raises an important problem: with the absorbing-barrier procedure, it is possible to determine the fraction
of mass which is collapsed at a given resolution, but no information is provided on how the collapsed
medium fragments into clumps. At small resolutions, the excursion sets of the inverse collapse time F ,
in Lagrangian space, consist of isolated, simply connected regions, every region containing a single peak
(see, e.g., Adler 1981). It is then quite reasonable to assume that each of such regions will form a single
structure. At moderate resolutions, of order one, excursion sets start to be multiply connected, and their
topology becomes increasingly more complicated as the resolution grows. In this case, a precise prescription
for the fragmentation of the collapsed medium has to be given in order to determine the number of isolated
structures; such a prescription would anyway be a new element in the theory.

For instance, it could be assumed that structures form around the peaks of the F field (which is a different
hypothesis with respect to the canonical one in which structures are supposed to form in the peaks of the
linear density field). Then, since the normalization of the MF is fixed by the excursion sets approach, a
procedure like that proposed by Appel & Jones (1990) and by Manrique & Salvador-Solé (1995;1996) could
be used to fragment the collapsed medium. This would be an interesting fusion of the excursion set and
peak approaches, but, given the complexity of the F process, it would be best addressed though the Monte
Carlo simulations of the kind presented in §3.3.2.

It appears that the mass-resolution relation is the place in which the spatial correlations of the F process,
which were avoided by means of the punctual interpretation of collapse times, come into play. With the
global interpretation proposed by Blanchard et al. (1992) and Yano et al. (1996), spatial correlations are
explicitly included in the diffusion problem, with a consequent complication of the formalism; however, the
resolution-mass relation is in that case “exact”, as all the points which collapse into the spherical region
are properly taken into account. This conclusion is true only provided spherical collapse is true (and top-
hat smoothing is used); in practice such a procedure imposes spherical symmetry to the excursion sets in
Lagrangian space, which is a further approximation. Moreover, Betancort-Rijo & Lopez-Corredoira (1996),
who explicitly assume the sphericity of excursion sets, have concluded that the global interpretation can be
applied to peaks, but not to general field points.

A more realistic resolution-mass relation would predict a whole distribution of masses to form at a given
resolution:

Λ → p(M ; Λ). (4.33)

The p(M ; Λ) function gives the probability that a mass M is formed at a resolution Λ; its mean value will
be of order:

∫ ∞

0

Mp(M ; Λ)dM ∼ ¯̺R(Λ)3, (4.34)

as the smoothing length R(Λ) is the relevant scale in this case; the proportionality constant, of order one,
will in general depend on the shape of the filter, on the power spectrum and on the resolution. The MF
would then be given by:

Mn(M)dM = ρ̄

(∫ ∞

0

n(Λ)p(M, Λ)dΛ

)

dM , (4.35)

i.e., by the n(Λ) curve convolved with the distribution p(M, Λ). According to the discussion given above,
such a p distribution is expected, at small resolutions, to be peaked at its mean value, while its shape at
large resolutions is expected be more complex, probably influenced by the details of the prescription chosen
to fragment the collapsed medium. Then, with respect to using the simple golden rule, the introduction of
the p distribution is expected not to influence dramatically the large mass tail of the MF, while it is likely to
influence the small-mass part, which is confirmed to be a not robust prediction of this kind of MF theories.
Finally, differences in the p distributions for different filter shapes could in principle at least attenuate the
differences between the MFs found with SKS and Gaussian filtering.

The MF is finally given by using the golden-rule, in the simple case of scale-free spectra. In this case,
the exact value of the proportionality constant can be absorbed in the definition of a typical mass M∗:

Λ = (M/M∗)
−(3+n)/3. (4.36)

M∗ is the mass corresponding to unit variance; note that this definition is different from the usual PS one
by a factor (δc)

3/(3+n). Fig. 4.15 shows the resulting ELL and 3RD Gaussian-smoothed MFs for the case
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Figure 4.15: Mass functions: (a) n = −2, (b) n = 1.

n = −2 and 1 (the latter case is cosmologically unrealistic, but of academic interest); the PS MF with δc=1.5
has been shown for comparison. Spectra have been normalized by assuming unit variance over a top-hat
sphere of radius 8 h−1 Mpc. It can be noted that, especially in the n = −2 case, the MF is stretched along
many orders of magnitude, so that the (small) differences between the different curves are not very visible.
It is confirmed that the PS MF with δc=1.5 is, at large and intermediate masses, a good approximation of
the Gaussian-smoothing MFs presented here. At small masses the dynamical MFs, especially the 3RD one,
are typically flatter than the PS prediction.

4.5 Discussion

In this Chapter it has been shown that the excursion set formalism can be extended to the case in which the
F process, a non-linear and non-local functional of the initial potential, is considered. A PS-like procedure
is enough to obtain the main features of the MF. IF SKS filtering is used, it has been demonstrated that the
diffusion formalism can be extended to the non-Gaussian F process, by considering it as a diffusion process.
The problem can then be transformed to the diffusion of a Wiener process with a moving absorbing barrier.
For Gaussian smoothing, the simple approximation proposed by Peacock & Heavens (1991) has been shown
very successful in finding the MF. The passage from the resolution to the mass variable requires knowledge
of how collapsed matter gathers in clumps, an element which is missing in the excursion set approach; the
MF has been found by means of the usual resolution-mass relation (the so-called golden rule, Eq. 4.32), and
the consequences of this approximation have been discussed.

The main conclusions are the following:

1. A larger number of large-mass objects is expected to form with respect to the canonical PS prediction
with δc=1.69.

2. The large-mass part of the MF is considered robust with respect to the dynamical prediction. The ELL
prediction tends to give more objects than the 3RD one in the large-mass tail; this is due to the fact
that 3rd-order Lagrangian theory slightly underestimates spherical collapse; thus the ELL prediction
is considered more believable in that range.

3. Reasonably accurate analytical solutions have been given for (at least the large-mass parts of) the
PS-like, SKS and Gaussian MFs.

4. Both PS-like and Gaussian-smoothing MFs give fewer objects than the SKS one, by roughly a factor
of 2, in the large- and intermediate-mass ranges.
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5. PS-like and Gaussian MFs very similar to the PS one with a δc ≃ 1.5 parameter.

The small-mass part of the MF is not considered a robust prediction of the theory, for at least three
reasons:

1. The definition of collapse, which is based on the concept of orbit crossing, is not expected to reproduce
common small-mass structures like virialized halos. OC regions rather represent those large-scale
collapsed environments in which the virialized halos are embedded.

2. All the dynamical predictions used are considered good as long as the inverse collapse time is not small.
Thus, the small-mass part of the MF is based on non-robust dynamical predictions.

3. The p distribution of the forming masses, at a given resolution, is likely to significantly affect the
small-mass part of the MF.

Obviously, this criticism applies in the same way to all the MF theories based on the excursion set
approach, as well as on the peak approach.

It has been noted that the dynamical predictions analyzed here, especially the 3RD one, tend to cut off
at small masses. This corresponds to the onset of the non-linear barrier (and then to the peak of the F -PDF
curves, Fig. 3.12, whose actual existence is considered rather certain), which somehow introduces a second
characteristic scale in the MF.

Gaussian smoothing is preferred for three reasons:

1. it optimizes the dynamical predictions (as far as we know; see §3.5);

2. it stabilizes the trajectories;

3. it gives the right number of intermediate-mass objects.

The prediction of more large-mass objects, caused by the improved dynamical description of collapse,
confirms some previous claims, for example by Lucchin & Matarrese (1988) and Porciani et al. (1996), who
introduced non-Gaussianity of dynamical origin in the PS or diffusion approaches (§2.3). This increase can
be seen as the effect of tides on the dynamics of the mass element (Bertschinger & Jain 1994). Besides, even
spherical collapse, when the global interpretation of collapse times is assumed (§2.3.4), leads to the prediction
of more large-mass objects (Blanchard et al. 1992; Yano et al. 1996; Betancort-Rijo & Lopez-Corredoira
1996).

The similarity of the (Gaussian-smoothed) dynamical MF with a PS one, with δc=1.5, makes the dynam-
ical MF be consistent with many numerical simulation (§2.2), even though this agreement is not a real proof
of validity as (i) OC regions are not the halos extracted from simulations, and (ii) the resolution-mass relation
is still treated in a simplified way. However, the dynamical MF theory does not predict the trend of lower δc

values at higher redshifts, observed in recent N-body simulations (see references in §2.2). An explanation of
this behavior was proposed by Monaco (1995): the presence of small-scale power can effectively slow down
gravitational collapse, through dynamical events of the kind of previrialization, proposed by Peebles (1990;
see also Lokas et al. 1996; Bouchet 1996), or through dynamical friction with those possible particles which
evaporate out of the collapsed structures (Antonuccio & Colafrancesco 1994). Such events could be effective
for power spectra with n > −1 (Lokas et al. 1996). In CDM-like spectra, the effective spectral index at
M∗ is smaller than −1 at high redshifts, where δc=1.5 (or even less) is found, but becomes larger at lower
redshifts, where δc starts to increase to 1.7 or even larger values. However, such a behavior could also be
due to a dependence of the p distribution on the power spectrum.
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Chapter 5

The mass function world

The MF theory is the starting point for the modeling of the statistical behavior of astrophysical objects
in hierarchical cosmologies. Originally, this theory was developed to describe galaxy formation; Schechter
(1976) used a simplified version of the functional form of the PS MF to construct an analytical fitting formula
for the galaxy luminosity function:

φ(L)dL = φ∗(L/L∗)
α exp(−L/L∗)dL/L∗. (5.1)

This formula has become standard for describing the observed luminosity function of galaxies.
To model astrophysical objects, the knowledge of the MF is not enough: gas heating and cooling, star

formation, supernovae feedback and other gas-dynamical events (see §1.3) have to be inserted in the dark-
matter halos, in order to get any predictions about observable objects like galaxies, X-ray clusters, Lyman
α clouds or QSOs. For instance, the observed luminosity L∗ of the Schechter distribution is not related to
the critical mass M∗ of the MF, which is today of the order of the mass of galaxy clusters, but is related to
the gas cooling time scale.

On the other hand, it is possible, through indirect methods, to probe the depth of the potential well
of astrophysical structures, and then to determine their total mass. It is then possible to determine an
observational MF, which can be directly compared to the theory.

This chapter aims to give an overview of the MF world, which extends to include many branches of
cosmology. The main results on observational determinations of masses and on available observational MFs
will be reviewed, together with the cosmological constraints obtained by comparing such data with the MF
theory. The main applications of the MF theory in modeling astrophysical objects, with attention both to
methodology and to the resulting cosmological constraints, will be discussed. A special attention will be
devoted to the contribution that the dynamical MF theory, developed in Chapters 3 and 4, can give. §5.1
will deal with galaxies, §5.2 with galaxy groups and clusters and §5.3 with high-redshift objects.

5.1 Galaxies

Galaxy formation has always played a special role in cosmology. In fact, until the discovery of a hot gas
component in galaxy clusters, visible in X-rays, all the observable objects in the Universe (stars, gas, AGNs
etc.) were known to reside in galaxies, with the only important exception of the CMB radiation. Galaxies
are also the first place in which a convincing proof of the existence of large amounts of dark matter was
found.

One of the most important (and easily measurable) properties of a galaxy is its optical luminosity. The
luminosity function of nearby galaxies has been determined by many authors (see, e.g., Efstathiou, Ellis &
Peterson 1988; Ellis 1997 and references therein). Typically the luminosity function is well fit by a Schechter
function (Eq. 5.1), with α =≃ −1 and L∗ corresponding to an absolute magnitude of ≃ −19.5 − 5 log h. In
the 70’s and 80’s, the theoretical MF was sometimes directly compared to the observed luminosity function,
assuming a constant stellar mass/light (hereafter M/L) ratio (see the review by Lucchin 1989). This raised
a problem: the luminosity function is significantly flatter than the PS MF, whose low-mass slope is not
much different from −2. Subsequently, it was shown that M/L systematically varies with the luminosity (or
the mass) of a galaxy; to perform a meaningful comparison, the theoretical MF has to be compared to the
distribution of observed masses.

72



5.1.1 The galactic MF

The determination of galactic masses can profit from the fact that galactic dynamics is traced by a large
number of observable tracers, namely stars and gas clouds. The exact procedure for determining galaxy
masses depends on the particular dynamical status of the galaxy, i.e. on its morphology.

The masses of disk galaxies are probably easier to measure: disks are known to perform a “cold” dif-
ferential rotation, with rotational velocities (∼100–300 km/s) larger than velocity dispersions (<50 km/s).
The rotation curve of galactic disks can easily be reconstructed by means of the Doppler shift of spectral
lines as they are observed at different radii. Once the rotation curve is determined, the mass profile can
be estimated by solving the Newtonian problem of a self-gravitating disk (plus a spheroidal bulge, which
influences only the inner parts of the galaxy). The mass profile so determined can then be compared to
the light distribution, to test whether the luminous mass can be considered as responsible for the observed
rotation.

Rubin, Ford & Thonnard (1980) were the first to discover that luminous matter can not be held respon-
sible for the outer parts of the rotation curve, where the light fades down but the rotation curve continues
more or less flat, showing no Keplerian drop due to the lack of matter (see also the review of Ashman 1992,
or Persic & Salucci 1996). It is now accepted that spiral galaxies are embedded in dark matter halos which
extends much further than their optical radius.

The most extended analysis of spiral rotation curves was given by Persic & Salucci (1995) and Persic,
Salucci & Stel (1995) (in practice, because of selection biases, their galaxy sample does not contain gas-poor
lenticulars and Sa spiral galaxies). They showed that rotation curves follow a universal relation, with a
small scatter. This relation, the universal rotation curve (first proposed by Rubin et al. 1985), connects in
a unique way the mass, luminosity, central density and rotation-curve slope of any spiral galaxy. It is then
possible to find a total mass – luminosity relation; such relation has been shown, by the above mentioned
authors, to be:

M ∝ L0.5 (5.2)

Then, faint galaxies contain more dark matter than luminous ones, total masses not changing much with
luminosity.

An open problem that remains is where the dark halo ends. Optical rotation curves clearly indicate that
the dark halo extends further than the optical radius. Radio observations can push the observations as far
away as two or three optical radii, because neutral gas is still present in the outer parts of the disk; in this
case, the rotation curve is observed to continue its trend up to there. The extension of the dark halo can be
probed even further by considering the motion of satellite galaxies (Zaritsky et al. 1993), or the motion of
binary galaxy systems (Charlton & Salpeter 1991); such observations are consistent with halos which extend
up to ∼5 optical radii. Persic et al. (1995) give total mass values extrapolated to the radius at which the
mean density contrast reaches 200, a value inspired by spherical collapse.

Elliptical galaxies do not rotate and do not contain large amounts of gas (except in some important
cases). They can be considered as a gas of stars in dynamical equilibrium; then, their mass profile can be
determined by means of the Jeans equation (see, e.g., Binney & Tremaine 1987; it is given in Eq. 5.3);
however, the kinematics of elliptical galaxies is not simple, as many hints of triaxiality suggest. The masses
of elliptical galaxies can then be determined by means of the luminosity density of stars and their velocity
dispersion, estimated by means of the width of galactic absorption lines; in this way it is possible to probe
only the inner part of the potential well, in which there is not good evidence of dark matter. The external
parts can be probed, for instance, by exploiting the presence of gas in some ellipticals (see, e.g., Danziger
1996). According to recent studies (Bertola et al. 1993), ellipticals do contain some amount of dark matter,
and their total mass – luminosity relation is not very different from the one valid for spiral galaxies, Eq.
(5.2).

It is then possible to translate luminosity into mass, and then to determine the galactic MF (Ashman,
Salucci & Persic 1993). At small masses, it is a power-law with a slope slightly steeper than ∼ −1, but still
different from the PS prediction. However, given the limited mass range spanned by normal galaxies (not
much more than an order of magnitude), the exponential cutoff can lower the effective slope of the observed
MF to values not so different from −2; this can weaken the problem, but probably does not completely solve
it, as will be shown later.
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5.1.2 Galactic formation and cosmology

The topic of galaxy formation in cosmology has been reviewed by many authors; one of the most recent
reviews is given by White (1993), while Matteucci (1996) has reviewed the closely connected topic of the
chemical evolution of galaxies. The first ideas trace back to Binney (1977), Rees & Ostriker (1977), Silk
(1977), White & Rees (1978), Blumenthal et al. (1984), Fall & Rees (1986): if most matter in the Universe
is not baryonic, then dark-matter halos and gas follow different evolutionary paths; dark-matter evolution
is hierarchical and nearly self-similar (if the spectrum is gently curved, as in the CDM case), as described
by the MF theories described in previous Chapters, while gas dynamics is dominated by dissipation. Gas
falls into dark-matter halos and, by dissipating part of its energy, settles down into the core of the halo,
fragmenting into clouds and giving rise to star formation. This process leads to a new characteristic scale,
the luminosity L∗ of the galaxy luminosity function; it corresponds to the halo mass for which the gas cooling
time equals the dynamical time of the halo; gas is not able to effectively cool down in larger halos. After
all gas has coalesced into halos, subsequent hierarchical merging mainly involves dark matter: for instance,
most galaxies retain their identity inside groups or clusters. Note that the problem of galactic formation is
also connected to the “Eulerian” bias problem (see §1.1): once the kind of halos in which galaxies form are
determined, their spatial correlation properties, as compared to those of dark matter, determine the bias
parameter.

To model the build-up of galaxies, dark-matter halos are usually constructed by means of the Lacey &
Cole (1993) merging histories, which fit the evolution histories of N-body halos (§2.3.3). The final properties
of halos are obtained by means of the top-hat spherical collapse model, or by assuming an isothermal profile
for the halo, or, more recently, by assuming that halos follow the simple universal profile found in N-body
simulations (Navarro, Frenk & White 1996; Navarro 1996). Note that this is in surprising agreement with
the fact that spiral galaxies follow a universal rotation curve (§5.1.1), even though the two universal profiles
do not agree in full detail.

As the discussions in the previous Chapters have demonstrated, dark-matter evolution is not understood
in detail; nonetheless, the modeling of virialized dark-matter halos is probably the safest step in galaxy
formation. The gas fallen inside the halos consists of at least three main phases, namely hot, X-ray emitting
gas, cold neutral gas and stars. Shock heating, gas cooling, dissipation of angular momentum, star formation,
feedback from star formation (including supernovae), further gas accretion, dissipative galaxy merging,
chemical evolution are the main events which have to be modeled. Every step introduces poorly constrained
parameters and oversimplified assumptions; the main uncertainties probably come from the initial mass
function of newly formed stars, which determines the number of supernovae, and the rate of dissipative
galaxy mergers. Such studies have been performed by a number of authors, among whom are Frenk, White
& Davis (1989), Peacock & Heavens (1990), White & Frenk (1991), Cole (1991), Lacey & Silk (1991),
Blanchard, Valls-Gabaud & Mamon (1992), Kauffmann & White (1993), Kauffmann, White & Guideroni
(1993), Kauffmann, Guideroni & White (1994), Kauffmann & Charlot (1994), Cole et al. (1994), Avila-Reese
& Firmani (1996).

Despite their complexity, such theories succeed in predicting the main characteristics of galaxies, as the
L∗ parameter, the fraction of morphological types, the main colors, and some characteristics of high-redshift
galaxies, as number counts and color evolution. Some important points in such theories are: (i) gas can
effectively cool in small halos; as a consequence, all the available gas can very soon cool in subgalactic clumps
(cooling catastrophe), unless some energetic events, like supernovae explosions, prevent it from coalescing
until galactic-size halos have assembled (White & Rees 1978). (ii) As for the galactic MF, the predicted
luminosity functions are typically steeper than the observed one. (iii) Ellipticals are usually assumed to form
from mergers. (iv) Larger galaxies are typically predicted to form later. These last two points can be tested
against chemical evolution models and observations of high-redshift galaxies; however, they do not seem in
clear agreement with these observations.

On the other hand, galaxy formation can be studied by means of N-body simulation with hydrodynamics,
typically treated through the smoothed particle hydrodynamics (SPH) technique. Such simulations have
been performed, for instance, by Katz (1992), Navarro, Frenk & White (1995a), Evrard, Summers & Davis
(1994), Steinmetz (1996), Katz, Weinberg & Hernquist (1996), Tormen, Bouchet & White (1997), Gelato
& Governato (1996). The present state-of-the-art of hydrodynamic simulations still does not reach firm
conclusions about galaxy formation, mainly because of the limited resolution, and because star formation
is still treated at a heuristic level; however, the formation of gas disks is observed to take place inside
dark-matter halos, even though disks are usually too centrally concentrated.

Merging histories can be directly used to model astrophysical events connected with interactions. For
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example, the aggregation formalism proposed by Cavaliere, Colafrancesco & Menci (1991) can be used as
follows. The kinetic Smoluchowsky aggregation equation (Eq. 2.16; see complete references in §2.5.3), can in
particular conditions give rise to a merging runaway, which corresponds to the formation of a central massive
objects with mass comparable to the total mass of the system; such a merging runaway can be taken as
responsible for the formation of large cD galaxies in protoclusters, or for the “violent” erasure of substructures
in galaxy clusters. Kinetic aggregations can also take place in a more quiet way, in suitable environments
like large-scale galaxy filaments; in this case they can cause a flattening of the luminosity function, and can
justify the increased number counts of blue galaxies at large redshifts as an effect of merging-induced star
formation. Similarly, Bower (1991) interpreted the increased number of blue galaxies in high-redshift galaxy
clusters (the so-called Butcher-Oemler effect) as the effect of cluster formation, modeled by means of the PS
merging histories (§2.3.3). The time scales for halo formation (§2.5.2) have been used by Blain & Longair
(1993a,b) to estimate the radiation background in the millimetric band, caused by star formation in galaxies.

In my opinion, galactic formation is more a problem of gas dynamics than of dark matter. In fact, the
numerical dark-matter halos, with abundances predicted by the PS theory, probably suffice to model the
dark-matter side of galaxy formation in a satisfactory way, given that the other steps, connected to the gas
behavior, are very uncertain. Moreover, any improvement of the modeling of merging histories, with respect
to the Lacey & Cole ones, could be not very important, as galaxy mergings follow a different path, in which
dissipative events are predominant. Besides, the necessity, expressed in the previous chapters, of deepening
the dynamical problem of halo formation, remains.

With respect to the dynamical MF theory, today galaxies lie in the small-mass, power-law part of the
MF, which is considered as a not robust prediction. On the other hand, if galaxies are typically found in
galaxy groups (or clusters), and if at least many galaxy groups have already experienced their first collapse,
then, from the MF point of view, galaxies are not associated to isolated clumps, but are just substructure
of a larger structure. From this point of view, a direct comparison of the galactic MF to the dynamical
one does not make much sense. A more evolved dynamical theory, able to resolve the internal structure of
collapsed clumps, could be used to describe galaxies inside larger-scale environments; the kinetic theory of
§2.5.3 provides such an example. Then, we would be led to the existence of two MFs, one for the large-scale
environments, which could be given by the dynamical theories presented above, and another one for stable
substructures, which would describe real galaxies.

On the other hand, high-redshift protogalaxies are thought to be associated with dark-matter structures
which were just collapsing at the epoch of galaxy formation. At that stage, in which dynamical transients
may have had an important role, a dynamical MF theory can apply (see §5.3). As a consequence, the
dynamical MF theory can be useful to understand those features which were imprint on galaxies at the
epoch of their formation.

5.2 Galaxy groups and clusters

Galaxy groups and clusters are observationally defined as local density enhancements of the galaxy field,
which satisfy some threshold criterion. There is no crucial difference between the two classes of objects: by
definition (Abell 1958), rich galaxy clusters present at least 50 galaxies, with apparent magnitude between
m3 and m3+2 (m3 being the apparent magnitude of the third most luminous galaxy) inside a sphere of
radius 1.5 h−1 Mpc, while galaxy groups are usually sought for by means of a friends-of-friends percolation
algorithm (Hucra & Geller 1982), or by means of a hierarchical algorithm (Materne 1978). Clusters can
also be defined, in a physically clearer way, by means of their X-ray emission (see, e.g., Sarazin 1986); on
the other hand, it has been observed that many large or compact groups show the same X-ray emission as
clusters, although with lower luminosities.

The first, pioneering comparison of the group (luminosity) multiplicity function to the PS MF was made
by Gott & Turner (1977); groups were identified as local overdensities in the number of galaxies, and their
multiplicity was estimated on the basis of the number and luminosity of its component galaxies, which is
equivalent to assuming a constant M/L ratio.

Later, it became clear that such estimates, simply based on the optical luminosity of structures (and
then on the number of galaxies), are unsatisfactory, at least when rather large mass ranges are considered,
because the M/L ratio is a function of the mass of the structure, larger structures showing more dark matter
(see, e.g., Bahcall 1988, even though, as stated in §5.1.1, galaxies show an opposite trend). Nowadays, a
number of different methods for estimating the mass of galaxy structures have been developed, and mass
estimates for a discrete number of objects are available.
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5.2.1 Mass determination

Up to now, only a few authors, whose works are described in the following, have attempted to estimate the
MF of galaxy systems; the observational determination of this quantity is not definitive at all. However,
objects masses can be estimated by means of three independent methods. Up to now, mass measures are
affected by large errors, of order at least of 50%, and the different methods do not always agree, but such mass
estimates are expected to increase in precision with the increase of the number and quality of observational
data.

Optical masses

Optical determinations of cluster masses are obviously based on the component galaxies. Analogously to
elliptical galaxies, a cluster can be considered as a “gas” of galaxies; if this gas is in equilibrium, and if the
cluster is spherical, then the following Jeans equation applies:

dΦ(r)
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= − 1
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r (r) − σ2
t (r)). (5.3)

Φ is the gravitational potential of the cluster, n(r) is the galaxy number density, and σ2
r , σ2

t are the radial
and transverse velocity dispersions. While the (projected) galaxy number density is directly observed, only a
combination of the two velocity dispersions, namely the dispersion along the line of sight, can be measured.
It is possible to solve for this problem in a self-consistent way (Dejonghe & Merritt 1992), but such a refined
procedure requires a large number of galaxies, of order of a few hundreds, to work in practice. On the other
hand, by making some further assumption on galaxy orbits, it is possible to determine mass profiles with a
lower number of galaxies (see, e.g., Merritt & Gebhardt 1994).

On the other hand, a “cheaper” mass determination can be obtained by means of the virial theorem (see,
e.g., Limber & Mathews 1960; Giuricin, Mardirossian & Mezzetti 1982), according to which the mass of a
structure is related to its line-of-sight velocity dispersion σ2

V and virial radius Rv in the following way:

M ≃ σ2
V Rv/G. (5.4)

The exact proportionality constant depends on the cluster profile; it is usually assumed to be 3π/2. The
virial radius of a system of N masses {Mi}, with mutual projected distances (rij)⊥, is defined as:
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The second expression, which is the one commonly used for estimating Rv, assumes for simplicity that all
galaxies have the same mass; it was shown in §5.1.1 that the dependence of galactic mass on luminosity
is not very strong. Virial masses are affected by rather large errors, of order 50%, but can be applied to
clusters with at least 30 measured redshifts (see Biviano et al. 1993).

Virial estimates are affected by a number of problems: first the number of tracers (of galaxies) is limited in
any case; this places a lower limit on the precision which can be achieved by means of such measures. Second,
foreground and background galaxies, not belonging to the cluster, contaminate the determined quantities,
especially the velocity dispersion. This can be corrected for by developing statistical tools to exclude such
interlopers and obtain robust estimates of velocity dispersions (Beers, Flynn & Gebhardt 1990; Girardi et
al. 1992). Third, the mass determination strongly relies on the hypothesis that the cluster is virialized.
Substructures in the galaxy and X-ray distribution demonstrate that this is not the case in a large number
of clusters. This can be corrected for by eliminating clusters with strong substructures. On the other hand,
a great advantage of virial mass estimates is that they can be extended to the outer parts of the cluster,
at variance with X-ray estimates (see below), and that they are more effective in detecting the case of two
clusters lying along the same line of sight.

To obtain an MF of clusters, it is necessary to estimate all the masses of a complete catalog of galaxy
clusters, or to estimate the masses of an incomplete catalog, then correcting for incompleteness. An MF of
galaxy clusters, based on virial mass estimates, has been given by Biviano et al. (1993) for a subsample of
the Abell (1958) and ACO (Abell, Corwin & Olowin 1991) clusters. They found their MF to be consistent
with a power law of slope about −2.5; if the MF is believed to be a power law of slope −2 at small masses,
such a steepening can be interpreted as an effect of the exponential cutoff.
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Galaxy groups can be analyzed by means of the same methods, but the number of galaxies which can
be used is small, and the virialization hypothesis is much more uncertain for such objects. The effect of
incomplete virialization can be corrected for by following the recipe of Giuricin et al. (1988), who modeled
the groups as spherically collapsing structures, and estimated the virialization state by means of the crossing
time, defined as the ratio between virial radius and the square root of velocity dispersion; the difference
between this time scale and the Hubble time defines the dynamical state of the structure, and then its
displacement from virialization. To find the group MF, it is necessary to estimate the masses of an existing
group catalog, and then correct for the selective loss of small groups at large distances. This was done by
Pisani et al. (1992), who determined the MF of the galaxy groups of Tully (1987). They found their MF to
be a power-law with slope about −2, in surprising agreement with the typical prediction of MF theories.

X-ray masses

As mentioned above, galaxy clusters and large groups strongly emit in the X-ray band; such emission is
mainly due to thin bremsstrahlung emission by the hot plasma which fills the gravitational well of the
cluster (see, e.g., Sarazin 1986; Cavaliere & Colafrancesco 1990; Jones & Forman 1991). This emission can
be observed by means of X-ray satellites, such as Exosat, Einstein, Rosat, Asca or the most recent Beppo-
Sax, or the future Axas. Two main quantities are observed, namely the luminosity and temperature of the
gas; the first quantity results of order LX ∼ 1044 erg/s, the second of order T ∼ 108 K. By solving the Jeans
equation of hydrostatic equilibrium of the gas in spherical symmetry, it is possible to estimate the total mass
of the cluster through the temperature T (r) and gas density ρg profiles:

M(r) = −krT (r)

Gµmp
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d log ρg

d log r
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d log T
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k and G are the Boltzmann and gravitational constants, µ is the mean molecular weight and mp is the proton
mass. The temperature gradient is usually assumed to be small, as data seem to indicate. The density profile
is usually parameterized through the β-model of Cavaliere & Fusco Femiano (1976):

ρg(r) = ρ0(1 + (r/rc)
2)−3β/2. (5.7)

The β and rc parameters are found by fitting the observed X-ray profiles with the expected projected
emission, proportional to ρ2

g.
Mass estimates based on this procedure require very good data, today available only for a limited number

of clusters. On the other hand, distributions of the X-ray luminosities (Edge et al. 1990) and temperatures
(Edge et al. 1990; Henry & Arnaud 1991) of (X-ray) complete samples of clusters are available in the
literature. As will be shown below, such quantities are known to tightly correlate with the total mass of
the cluster, so that it is often preferred to compare theories and data in terms of luminosity or temperature
functions.

The definite advantage of X-ray masses is that they are based on gas, whose physics is much simpler and
well-understood than that of galaxies, and which is not limited by limited number of tracers (gas molecules
are much more numerous than galaxies!). Moreover, only galaxy groups and clusters show extended X-rays
emission, so that there is no interloper problem in this case, except the (not uncommon) case in which more
than one cluster lie in the same line of sight. However, X-ray masses are still affected by large errors, mainly
due to the difficult temperature determination and to non-sphericity effects; moreover, X-ray emission is
limited only to the inner part (∼ 0.5 Mpc) of the cluster, so that the total mass of the cluster has to be
determined by means of some extrapolation.

The relation between optical and X-ray masses has not been well settled as yet; some authors claim that,
for some clusters, optical masses tend to be larger than X-ray ones, but this conclusion could be just due to
the fact that both measures are still affected by large errors of systematic nature.

Another determination of the cluster MF, which exploits both optical and X-ray information, has been
performed by Bahcall & Cen (1993). They determined the mass of cluster both by correlating it with
the number of core galaxies (which is equivalent to assuming a constant M/L) and by using the X-ray
temperature function of Henry & Arnaud (1991). Both the relations used were calibrated on the Coma
cluster. A further measure at lower masses was added by using the group luminosity function of Bahcall
(1979). Their resulting MF was fit by means of a Schechter curve with a parameter α = −1. Such MF is in
marginal disagreement with that given by Biviano et al. (1993). Again, this disagreement could be due to
systematics in the mass determinations; the problem is regarded as still open.
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Lensing masses

Another promising way of measuring cluster masses is by means of gravitational lensing. The strong potential
well of the cluster can heavily or slightly distort the images of background galaxies; it is possible, from the
shape of the distorted images, to reconstruct the depth of the potential well, and then the cluster mass. Of
course, it is necessary to determine whether such distortions are intrinsic of the background object or caused
by lensing. In some cases, galaxy images are very heavily distorted into arc images; such events are called
giant arcs. Making some hypotheses on cluster geometry, it is possible to determine the projected mass inside
the arc (see, e.g., Fort & Mellier 1994). Unfortunately, such events are rare, and the obtained masses deeply
depend on the geometrical model of the cluster. This method has recently been questioned by Bartlemann
& Steinmetz (1996), who have found, using numerical simulations, that arcs form predominantly in cluster
which are experiencing a strong merging event along the line of sight.

On the other hand, it is possible to reconstruct the potential of the cluster by using the weak distortions
of many background galaxies, without making any hypothesis on cluster geometry; this is called weak lensing
method (see, e.g., Kaiser 1996). The small distortions of galaxy images, caused by lensing from the cluster
potential, can be disentangled from the intrinsic ellipticity of foreground galaxies by measuring the mean
distortion of a large number of them, in the hypothesis that intrinsic ellipticities do not correlate on the
relevant scales. When the distortions are weak, they are linearly related to the potential, but the signal is
weak; on the other hand, when the distortions are stronger, the relation becomes non-linear and then more
difficult to invert. The inversion techniques, necessary to extract the signal in a bias-free way, have not been
completely developed as yet.

Mass estimates based on lensing are now available only for a limited number of clusters. The main
advantage of such mass determination is that they directly probe the gravitational potential, so that no
equilibrium or virialization hypothesis is needed; in the weak lensing case, no hypothesis on the geometry
of the cluster is needed either. They require high-quality imaging of the cluster field, but do not require
spectroscopy in general. The reconstructed mass profiles are in general compatible with optical and X-ray
profiles; lens masses tend to result larger than optical and X-ray masses (at the same radius), by a factor
of 2, but the opposite behavior can be noted in some cases. Given the uncertainties in the present state-of-
the-art, it is not unrealistic to imagine that these discrepancies will be reduced or removed with the refining
of observations and analyses.

5.2.2 Clusters and cosmology

Galaxy clusters, being the largest collapsed structures of our Universe, have long been recognized as objects
of crucial importance in the cosmological context. In fact, their abundance and main properties (velocity
dispersion, X-ray luminosity and temperature, substructure) can provide valuable constraints to be satisfied
by cosmological models. The PS MF, as an analytical fit of the results of N-body simulations, has usually been
used to determine the number of clusters. However, comparisons with data have usually been performed not
in terms of mass but in terms of directly observed quantities, such as velocity dispersions, X-ray luminosities
and temperatures.

As a matter of fact, cluster masses have been shown to tightly correlate with the above-mentioned
quantities. Such correlations can be theoretically found by using the hypotheses of spherical symmetry,
gas equilibrium and halo virialization, but their calibrations depend on the assumed density profile, on
the departures from sphericity and on other particulars, so that they are often calibrated on numerical
simulations with hydrodynamics or real data. Such correlations are:

σ2
V ∝ (1 + z)M1/3 (5.8)

(Evrard 1989), where z is the redshift at which the cluster is observed;

T ∝ (1 + zc)M
2/3Ω

1/3
0 ρ1/3

g (5.9)

(see, e.g., Lilje 1992), where zc is the cluster redshift at collapse and ρg is the mean gas density;

L ∝ (1 + z)−3/5M4/3ρ7/6
g K (5.10)

(see, e.g., Colafrancesco & Vittorio 1994), where K is the standard correction for the change of the spectral
band as an effect of redshift.
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Using this formulas, the (PS) MF can be translated into a velocity dispersion, X-ray temperature or
X-ray luminosity function, and then compared with data. Observational X-ray temperature functions have
been given by Edge et al. (1990), who also give the X-ray luminosity function, and by Henry & Arnaud
(1991). Velocity dispersion functions have been given by Zabludoff et al. (1993), Girardi et al. (1993),
Mazure et al. (1996), Fadda et al. (1996). Notably, different velocity dispersion functions, given by different
authors, are consistent among them within the limits of completeness of the sample; the same holds true for
the two temperature functions.

Many authors have compared the predictions of cosmological models with the observed distributions.
Typically, the PS formula with the spherical δc=1.69 value has been used, as galaxy clusters, being rare
structures, collapse quasi-spherically (as shown in Chapter 4, a δc value of 1.5 would have been better; for
instance, Klypin & Rhee 1994 adopt this value). Evrard (1989) and Peebles, Daly & Juszkiewicz (1989), and
more recently Cavaliere, Menci & Tozzi (1994), claimed that the existence of a significant number of clusters
at high redshifts (z > 0.5) and with large velocity dispersions (σ2

V > 700 km/s) would be hard to reconcile
with a CDM scenario. Such a conflict would be solved by considering low-Ω0 universes (with or without
cosmological constant), in which structures have stopped forming at small redshift, and then clusters have
been assembled at large redshifts. The consistency of a low-density Universe with data was also advocated
by Bahcall & Cen (1992; 1993) and by Kofman, Gnedin & Bahcall (1993), by comparing the theoretical MF
directly with the observational one by Bahcall & Cen (1993). Another possible explanation would be an
effective slow-down of gravitational clustering as the logarithmic slope of the power spectrum crosses −1,
with the corresponding effective lowering of the δc parameter at large redshifts, as commented at the end of
§4.5 (Monaco 1995).

A comparison of PS-based predictions with X-ray data has been performed by many authors, for in-
stance Cavaliere & Colafrancesco (1988), Schaeffer & Silk (1988b), Lilje (1990; 1992), Kaiser (1991), Oukbir
& Blanchard (1992), Hanami (1993), Cavaliere, Colafrancesco & Menci (1993), Bartlett & Silk (1993), Co-
lafrancesco & Vittorio (1994), Cavaliere, Menci & Tozzi (1994), Balland & Blanchard (1995), Kitayama &
Suto (1996a,b), Liddle et al. (1996), Viana & Liddle (1996), Eke, Cole & Frenk (1996), Pen (1996). A general
conclusion is that standard CDM fails to reproduce the observed abundance of X-ray clusters, especially at
large redshifts; again, a low-density Universe, with or without cosmological constant, or a mixed C+HDM
Universe, is usually reported to give improved fits. These conclusions have been confirmed by works based
on N-body simulations, as that of Ueda, Itoh & Suto (1993) or of Klypin et al. (1993).

Cluster abundances can be used to constrain the mass variance at scales of order ∼10 Mpc, as the
position of the exponential cutoff of the MF is more sensitive to the normalization than to the shape of the
power spectrum. This has been done by White, Efstathiou & Frenk (1993), Bond & Myers (1993c), and
Eke, Cole & Frenk (1996); they all reported the mass variance on 8 h−1 Mpc to be about 0.6 if Ω0 = 1,
and about 1 if Ω0 ∼ 0.3. Another important observational quantity connected with galaxy clusters is their
imprint on the CMB, through the so called Sunyaev-Zel’dovich effect (Sunyaev & Zel’dovich 1972). This
effect will be extensively measured by the next generation of satellites dedicated to CMB observations. A
number of theoretical works have been devoted to such a topic (see, e.g., Schaeffer & Silk 1988b; Cole &
Kaiser 1989; Cavaliere, Menci & Setti 1991; Makino & Suto 1993; Bartlett & Silk 1994; Barbosa et al. 1996;
Bond & Myers 1996c). Finally, galaxy clusters have been simulated by means of N-body simulations with
hydrodynamics; see, e.g., Evrard (1990), Thomas & Couchman (1992), Navarro, Frenk & White (1995b),
Ostriker & Cen (1996), Lubin et al. (1996), Anninos & Norman (1996).

Interestingly, while cluster abundances and evolution seem to suggest a low-density Universe (apart
the possibility of a C+HDM one), other observational evidences on clusters weight toward critical density.
Many clusters show strong or weak substructures (see, e.g., West 1994); even the core of the Coma cluster,
when observed accurately enough, shows some degree of subclustering. If subclustering is a remnant of
mergers, and if substructures survive much less than one Hubble time inside the cluster, then the degree of
subclustering would indicate that they have recently been assembled, and then that the cosmological density
is nearly critical (see, e.g., Richstone, Loeb & Turner 1992; Evrard 1994; Crone. Evrard & Richstone 1996;
West, Jones & Forman 1995). However, a flat Universe with a cosmological constant term could produce
a significant amount of subclustering (Jing et al. 1995). An analogous argument has also been given for
compact groups of galaxies: they can arise as the result of secondary infall on a normal galaxy group,
provided the density is critical; a Universe with cosmological constant would be only marginally inconsistent
with the observational evidence (Governato, Tozzi & Cavaliere 1996).

This brief review has been limited to a “Lagrangian” view of galaxy clusters, i.e. biased toward the
problems of mass distribution and internal dynamics. The important “Eulerian” topics of the strongly
clustered space distributions of galaxy clusters, of their power spectrum, their peculiar velocities, their
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dipole and so on are not of immediate interest in the present context. However, it is interesting to note that
such topics have been analyzed, among the various methods, by constructing mock cluster catalogs by means
of large Monte Carlo realizations, in which galaxy clusters are associated with the peaks of the Zel’dovich-
evolved density field (Borgani, Coles & Moscardini 1993); this procedure has an immediate interesting
connection with the dynamical MF theory.

5.2.3 Discussion

As mentioned before, clusters are usually assumed to evolve spherically, as they are rare fluctuations (see,
e.g., Bernardeau 1994). In Chapters 3 and 4 it was argued that spherical collapse does not reproduce
the statistics of collapse times of fast collapsing points. As a matter of fact, the two statements are not
immediately in contradiction, as the global collapse of an extended structure is a different thing from the
local collapse of a vanishing mass element (see the example at the end of §1.3). Anyway, it is clear from
theoretical arguments, N-body simulations and observations that non-sphericity can play an important role
in cluster formation. However, all these arguments are only qualitative, as an important point is missing.

The main point with cluster formation has been well expressed by Cavaliere, Colafrancesco & Menci
(1991): clusters are ill defined objects in space and time. While it is quite clear that clusters exist (their
X-ray emission is a crucial proof), it is not clear where they end, and this indeterminacy hampers the
same definition of cluster total mass. Moreover, clusters are usually assumed to be spherical, while N-
body simulations suggest that a sheet-like or filamentary pattern dominates the outer parts of clusters, and
accretion of matter does not take place isotropically but through filaments.

The dynamical MF theory can give an important contribution to cluster formation. The matter which
dynamically belongs to the cluster can be defined as the matter which has entered a multi-stream region;
if the Lagrangian excursion sets of the inverse collapse time F are simply connected, the cluster mass is
well-defined, at least from the theoretical point of view. A comparison with N-body simulation can help to
understand whether such matter is found in a single relaxed clump or in a more complicated structure (in
the Eulerian space). Moreover, a dynamical description of the kind given in Chapter 3 takes into account
the important transient features of clusters. Finally, if substructures are the remnants of recent mergers, a
dynamical MF theory can be used to connect the statistics of substructures to cosmological models.

5.3 High-redshift objects

Active galactic nuclei (AGN) are the most luminous compact objects which we can observe in our Universe.
They are believed to consist of supermassive black holes (SBH) which accrete matter from a host structure,
which is believed to be a galaxy or a protogalaxy. The geometry of the infalling matter determines the kind
of emission and its spectral features. Very luminous AGNs are usually called quasars (quasi-stellar radio
sources) or, more generally, QSOs (quasi-stellar objects), even though the hosting galaxy of many QSOs
have recently been observed. The SBH paradigm is the basis of the so-called unified model, which aims
to describe all the kinds of AGNs as different realizations of a single kind of object. In practice, the SBH
paradigm has never been observationally demonstrated, but the present constraints of high efficiency in the
release of energy, high compactness of the central engine and short variability time (which can be less than
a day) strongly hamper any model based on non-gravitational events. The AGN problem has widely been
studied, and the relevant literature is very vast; the main topics have been reviewed, for instance, by Rees
(1984), Lawrence (1987) and Blanford (1990).

The relevance of QSOs in cosmology is great, as such objects are visible even at very high redshifts, up
to z = 4. They can then be used to probe the early Universe. Moreover, it has been discovered that a
“forest” of Lyman α lines, with a variety of redshifts, can be recognized in absorption in their spectra. The
structures which originate these lines, called Lyman α clouds are probably gas clouds which lie in the same
line of sight of the QSO; the ones associated with the strongest lines, the damped Lyman α systems, are
probably associated with high-redshift protogalactic disks; some of them have been observed with optical
telescopes. This class of objects is a further precious tool to constrain cosmological models at high redshifts.

5.3.1 QSO formation and cosmology

The event of QSO formation couples what happens at very small scales, of the size of the SBH (∼0.01 pc)
with very large, cosmological scales, which at z ∼ 2 are of the order of ∼1 Mpc. This makes the problem very
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hard to address. It is essentially impossible to follow the cosmological creation of a SBH with present-day
numerical simulations, and probably with that of the near future, as the range of scales involved is too large,
and the physical mechanisms are too complex (see, e.g., Rees 1984). Then, heuristic analytical arguments
are the only way to address the problem.

The major phases of QSO formation and activity are believed to be the following (see, e.g., Haehnelt &
Rees 1993; Eisenstein & Loeb 1995b):

1. The perturbation within which the SBH is going to form, which is reasonably assumed to be a rather
massive, rare fluctuation, acquires angular momentum during its mildly non-linear evolution (Peebles
1969; White 1984). At this stage, gas follows dark matter.

2. The perturbation collapses and forms a virialized halo, which probably constitutes the nucleus or the
bulge of the forming galaxy. The gas is shock heated, but at least a part of it can cool and form a
rotationally-supported disk.

3. The disk cools and fragments, forming stars. Supernovae explosions may be able to sweep the gas away
from the forming nucleus, if the potential well is not deep enough.

4. On the other hand, the central part of the gas disk can lose angular momentum by means of a number
of viscous processes, among which are gravitational instabilities, turbulence (eventually induced by
supernovae) or magnetic fields.

5. If the central part of the disk shrinks at small enough radii, relativistic effects can provide enough
viscosity to make the gas collapse at even smaller radii.

6. If a runaway contraction sets in, the disk can evolve into a relativistic disk or a supermassive star,
depending on the amount of angular momentum which is not dissipated. Such configurations are highly
unstable, and a SBH forms in a (cosmologically) short time.

7. Matter starts to accrete onto the SBH; radiation is emitted with a high efficiency, of order of up to
10% of mc2. After some possible but probably short transients, the SBH radiates at the Eddington
limit.

8. The “fuel” stops accreting onto the SBH, whose luminosity suddenly decreases much below the Ed-
dington luminosity. The bursting phase lasts less than the Hubble time, about 107 yr.

9. Sometimes new fuel becomes available for the SBH; this can be due to interaction or merging events
which are experienced by the host object. This can give rise to new AGN activity (see Monaco et al.
1995 and references therein).

Although this chain of events is quite schematic and contains many questionable hypotheses, it gives an
idea of the complexity of the QSO phenomenon in connection to cosmology.

The main observational constraints that QSO formation theories have to fulfill are the luminosity function
of QSOs (see, e.g., Pei 1995), as function of redshift and in different spectral bands, and the upper limits on
the remnant SBH masses in normal galaxies (see, e.g., Cavaliere & Padovani 1988; Salucci & Szuszkiewicz
1996). Luminous QSOs show a comoving number density which steeply rises up to z ≃ 2, stays more or
less constant up to z ≃ 3 and then falls again, even though high-redshift measures are very uncertain. The
redshift evolution of the luminosity function is compatible with a pure luminosity evolution up to z = 2 and
a number antievolution at z > 3.5.

If SBHs radiate at the Eddington luminosity (LE = 1.3 × 1046(M/108M⊙) erg/s; see, e.g., Cavaliere &
Padovani 1988), the luminosity function can be transformed into a mass distribution of remnant black-hole
masses, with the conclusion that black-hole masses decrease with their formation time. Besides, QSO activity
has to last much less than a Hubble time, otherwise it would imply too large remnant black-hole masses, in
contradiction with the observational evidence (see, e.g., Cavaliere et al. 1983).

The problem of the QSO formation has been studied from a cosmological point of view by a number of
authors, among whom are Efstathiou & Rees (1988), Cole & Kaiser (1989), Carlberg (1990), Nusser & Silk
(1993), Kashlinsky (1993), Katz et al. (1994) Fugikita & Kawasaki (1994), Yi (1996). Such authors generally
estimate the number of quasars by assuming a priori in which kind of host object they are going to form.
The number of halos is generally estimated by means of the PS theory, sometimes checked by a comparison
to a N-body simulation (e.g., the works of Efstathiou & Rees 1988 and Katz et al. 1994). Haehnelt & Rees
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(1993), Haehnelt (1993), Eisenstein & Loeb (1995a,b) and Cavaliere, Perri & Vittorini (1997) have addressed
in more detail the problem of the cosmological formation of QSOs; their works will be now outlined.

Haehnelt & Rees (1993) argued that QSOs are associated with newly-formed SBHs, and that SBHs form
in common, already assembled proto-bulges of galaxies. A lower limit on the depth of the potential well of
the host object can be set by imposing that supernovae are not able to sweep all the gas away; halos with
virial velocities lower than ∼200 km/s can not host SBHs. The efficiency of SBH formation was assumed to
depend on the central density of the halo, which is larger at higher redshift (see §1.2.4), in order to obtain
smaller SBH masses at lower redshifts. This efficiency was inserted into the PS MF to give the number
density of SBHs; the resulting curve was convolved with a reasonable but speculative light curve in order to
obtain the luminosity function of QSOs. The resulting cosmological constraints were examined by Haehnelt
(1993). This procedure has the merit of relying on the simplest and safest hypotheses about QSO formation;
however, it contains many free parameters, and its validity can not be extrapolated to low redshifts, where
the refueling of existing SBHs is probably the most important mechanism in play.

Eisenstein & Loeb (1995a,b) concentrated their attention on the formation of SBH and on the role of
angular momentum; this quantity is of great importance, as it is necessary to dissipate it to form a compact
structure. To estimate the angular momentum acquired by protostructures, they modeled the structures
as collapsing ellipsoids. In this way, they calculated the angular momentum distribution of rare massive
concentrations; a small but sufficient number of massive clumps was then found to collapse with a final size
small enough that efficient viscosity can take place. Then, the time scale at which angular momentum is
dissipated was compared to the star-formation time scale (a free parameter): whenever the disk shrank fast
enough, a black hole was assumed to form, otherwise star formation would have prevailed. As a result, black
holes can form at high redshifts, z > 10; they become visible when a galactic-size structure supplies enough
gas to give rise to luminous QSO activity. These works provide an interesting attempt to follow in some
detail the physics of SBH formation, at the expenses of a strong simplification of the problem. A general
criticism could be that, in a realistic situation, the angular momentum of the central gas clump could be
uncorrelated with that of the dark-matter halo. The idea that SBHs form before the observable QSO activity
had already been proposed by Loeb (1993; see also Umemura, Loeb & Turner 1993).

Cavaliere et al. (1996) proposed a double QSO and galaxy connection: SBHs form in galaxies, and
are recurrently reactivated by galaxy interactions. To avoid too large a number of free parameters, they
supposed a constant efficiency of black-hole formation. Using the time-scale formalism of Cavaliere et al.
(1991), they introduced a formation time scale for SBHs and an interaction time scale for galaxies; the first
time scale dominates at high redshift, the second one at small redshifts. As a result, they succeeded in fitting
the luminosity function of QSOs with a limited number of free parameters. However, in this procedure the
formation of SBHs is still treated at a heuristic level: it is not unreasonable to think that the efficiency of
SBH formation crucially depends on some important parameter.

The dynamical MF described in Chapters 3 and 4 can give a substantial contribution to this problem,
especially if the angular momentum of a collapsing structure is important in determining whether a SBH is
going to form inside that structure. As shown by White (1994), Lagrangian dynamics is suitable to follow
the angular momentum acquisition of a collapsing clump: in fact, angular momentum is acquired during the
mildly non-linear evolution. More recently, Catelan & Theuns (1996a,b) have used Lagrangian perturbation
theory to determine the angular momentum of a collapsing ellipsoidal peak. An intrinsic difficulty of these
calculations resides in the determination of the set of Lagrangian space which is going to end up in the
structure. Through the rigorous definition of collapse as OC, the dynamical MF theory can provide such
sets as the excursion sets of the inverse collapse time F ; these objects can be investigated through Monte
Carlo simulations.

Because of the wealth of dynamical information available, the dynamical MF theory can be extended to
give not only the value of the angular momentum acquired by a structure, but also a joint merging – angular
momentum acquisition history. This could give some hints on how angular momentum is redistributed
inside the clump. All this information, obtained without assuming any special symmetry for the collapsing
structures, could be used to try to understand whether and when suitable conditions for the formation of a
SBH can be obtained.
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5.3.2 Lyman α clouds

As mentioned above, QSO spectra show, at shorter wavelengths than their Lyman α1 emission line, a
“forest” of thin absorption lines, of width ∼25 km/s. Lynds (1971) was the first to recognize such lines as
Lyman α absorption lines, associated to gas clouds which lie in the same line of sight of the QSO. These
clouds constitute a new class of high-redshift objects, whose properties can be used to constrain cosmological
models.

The observational state-of-the-art, relative to the search and interpretation of these objects, can be found
in the proceedings book edited by Meylan (1995). The main observational evidences can be listed as follows:

• There are three broad classes of Lyman α clouds. The objects of the first class are associated to lines
with a high column density of neutral hydrogen, NHI ≥ 3× 1020 cm−22 and small velocity dispersion,
∼ 10 km/s. These lines are rare with respect to the whole population, show strong damped wings, and
metal lines can be found at the same redshift. The structures associated to them are called damped

Lyman α systems, and are usually interpreted as the inner parts of protogalactic disks.

• The clouds associated to lines with column density larger than NHI ≥ 3 1017 cm−2 (these lines
are saturated but do not show damped wings) are called Lyman limit systems; they are in general
interpreted as the outer, less dense part of a protogalactic disk.

• The objects of the third class are associated to lines with column densities smaller than the Lyman
limit, and constitute the so-called Lyman α forest. They are thought to be associated to clouds of low
density contrast.

• Not much is known on the actual geometry of these structures. In some cases the galaxies corresponding
to Lyman α lines have been observed at intermediate or high redshifts (see, e.g., Lanzetta et al. 1995,
Steidel et al. 1997). There is some observational hint, based on observations of close QSO pairs or
triplets, that Lyman α clouds are quite spatially extended (see, e.g, Dinshaw et al. 1995; Bajtlik 1995).

I am neglecting the important topics of element abundances in Lyman α clouds and their interpretation,
or of their space correlations; these arguments are reviewed in Meylan (1995).

If damped Lyman α systems are generally thought to be associated to protogalaxies, the interpretation of
the Lyman α forest is more debated. Sargent et al. (1980) proposed a model in which the cloud is confined by
pressure exerted by the surrounding hot intergalactic medium; however such a model cannot easily reproduce
the different column densities observed. Another model, due to Rees (1986) and Ikeuchi, Murikama & Rees
(1988), associates the clouds with small CDM halos (see also Bond, Szalay & Silk 1988; Mo, Miralda-Escudé
& Rees 1993; Gnedin & Hui 1996; Hui, Gnedin & Zhang 1997). This model probably would not satisfy the
constraint mentioned before of extended Lyman α clouds. Recently it has been proposed that Lyman α
clouds are associated to “pancake” structures, which have collapsed along one axis but are still expanding
on the other axes (Haehnelt 1995). Recent N-body+SPH numerical simulations show that damped Lyman
α and Lyman limit clouds can be associated to more or less virialized halos or to gas filaments (see, e.g.,
Gardner et al. 1997; Rauch, Haehnelt & Steinmetz 1997; Weinberg 1996).

The abundance of damped Lyman α systems, interpreted as protogalaxies, has now become a standard
constraint to cosmological models; it has been used, for instance, by Mo & Miralda-Escudé (1994), Klypin
et al. (1995) and Liddle et al. (1996). These authors typically used the PS theory (sometimes tested against
N-body simulations) to find the number of structures which can host a Lyman α cloud. Notably, some of
them followed the suggestion of Monaco (1995), using a δc parameter of about 1.5: Klypin et al. (1995)
found δc=1.5 also by comparing the PS with their simulations, while Liddle et al. (1996) used the 1.5 value
only for Lyman α clouds, interpreted as structures which have just experienced their first collapse, while the
spherical value 1.69 was reserved to more relaxed structures such as galaxy clusters. The cosmological use
of the Lyman α forest is still debated; see, for instance, Haehnelt (1996), Cen et al. (1994), Cen (1997); a
general criticism to these approaches is that they are still rather model-dependent.

The dynamical MF theory can manifestly give a contribution to this topic. Dynamical pancake-like and
filamentary transients, which probably dominate the dynamics of Lyman α clouds, are treated in a realistic
way, and then structures of not large density contrast can be described. Moreover, the large amount of
dynamical information available can be used to model gas dynamics in a more realistic way.

1These far-ultraviolet lines are usually very hard to detect, as they are absorbed by the neutral hydrogen of our Galaxy.
However, they are so redshifted that fall in the optical or near ultraviolet.

2The column density is estimated by means of the depth of the line, the velocity dispersion by means of its width.
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As a final comment, the dynamical MF theory can also give an important contribution to the problem,
deeply connected to QSO and Lyman α formation and to the late reionization of primordial hydrogen, of
the formation of the first luminous objects (Tegmark et al. 1997; Rees 1996), which could be connected to
the collapse of the first structures, again possibly dominated by gravitational transients.
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Chapter 6

Prospects

The previous Chapters have shown that the cosmological MF is a lively and promising field, both from the
theoretical and from the observational point of view: the firm results are just a few, the open problems are
many, and many procedures have to be developed in detail.

From the theoretical point of view, the main problems are the following:

• It is necessary to understand in detail what is the total mass of a structure, and to find a rigorous, well-
posed and easily interpretable definition for it, suitable to help in the interpretation of observations.
In searching for this definition, it is not opportune to suppose a priori the presence of some symmetry,
or a certain shape for the density profile of structures; this definition has to take into account that
already collapsed and still infalling matter can coexist in the external regions of structures.

• It is necessary to understand the role of filtering in the MF problem, as different kinds of filters (sharp
k-space, Gaussian) lead to different and not equivalent formulations of the problem.

• It is necessary to take in full account the geometry of collapsed regions in Lagrangian space, going
beyond the usual golden rule described in §4.4. In the realistic case in which the stochastic process
on which the MF is based is non Gaussian, this investigation can be performed through Monte Carlo
simulations of initial fields.

• It is necessary to add more physics to the dynamical MF theory, to describe events such as the aggre-
gation and fragmentation of already collapsed structures. In this way, the dynamics inside structures
could be resolved; this is necessary to describe objects such as galaxies inside larger structures, as
groups or clusters. The kinetic theories presented in §2.5.3 go in this direction.

The state-of-the-art of the observational MF is quite promising, especially for galaxy clusters, for which
three independent procedures for mass estimates are available. The main problem is again, in my opinion, the
definition of the total mass of clusters: without a deep understanding of what a cluster is, any comparison
between theory and observations will have a certain degree of uncertainty; on the other hand, available
observational mass estimates are so uncertain that this indetermination now has a modest impact, but it can
become important in the near future. Another problem with mass estimates is that they often rely on some
restrictive hypothesis: virial estimate are obviously based on the hypothesis that the cluster is virialized
and on other hypotheses, X-ray estimates are based on spherical symmetry and gas equilibrium, giant arc
estimates are based on assuming a certain geometry for the cluster, while weak lensing estimates still present
technical problems. All these techniques will be improved, relaxing some of the restrictive hypotheses, when
available data will increase in number and improve in quality. Presently, comparisons between theoretical
predictions and data are usually performed in terms of direct observables, as galaxy velocity dispersions,
X-ray luminosities or X-ray temperatures.

The dynamical MF theory is a promising starting point for a further deepening of the MF problem and
its applications. The main ideas that can be developed are the followings:

• Comparison to simulations: the first necessary step is to test the validity of the dynamical MF
theory against N-body simulations. This is already an active project, and will be briefly described in
the next Section.
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• From resolution to mass: this important passage has been dealt with the simple golden rule; the
p distribution of forming masses, introduced in §4.4, has to be investigated before giving definite
predictions on the MF. This is also necessary to understand in detail merging histories.

• Merging histories: these are one of the most interesting products of MF theories. To obtain them
from the dynamical MF theory, it is necessary to understand the role of smoothing: Gaussian smoothing
allows us to distinguish (maybe artificially) between merging and accretion, while the rather special
SKS filter predicts only mergings with small or large halos.

• Joint mass-angular momentum statistics: the wealth of dynamical information on every collapsed
structure allows us to describe in detail the behavior of structures; in particular, it is possible to obtain
the joint merging – angular momentum histories, which can be a very important tool for galaxy
formation theories.

• QSO activity: the joint mass-angular momentum statistics can provide useful information for under-
standing cosmological QSO activity, in the hypothesis that the initial angular momentum of the halo
is important.

• Lyman α clouds: a subclass of these structures is probably observed during a not much evolved
phase, maybe after their collapse along one axis (or even just before). Then, the dynamical MF theory,
which takes into account the relevant dynamical transients and the geometry of collapse, can be used
to describe these structures in a satisfactory way.

• Galaxy groups: the dynamical state of many open groups of galaxies is not clear: they could be real
structures which are relaxing, or could be experiencing their first collapse, or could even be structures
without a precise dynamical meaning. The dynamical MF theory can help to understand whether such
groups are stable, well-defined structures or pancake-like transients, and if they can be used to obtain
useful cosmological constraints.

• Galaxy clusters: again, the wealth of dynamical information given by the dynamical MF theory
can lead to a more detailed description of galaxy clusters, especially in their external parts, whose
dynamical role can be clarified. In particular, as suggested before, it is important to understand what
is the total mass of a galaxy cluster, a thing which can not be addressed properly if dynamics is not
described in a realistic way.

• Substructures in galaxy clusters: if such substructures are a remnant of recent merging events
of structures of comparable size, merging histories can be used to predict the expected number of
substructures, a quantity which is known to depend strongly on the cosmological density parameter.
Given the transient nature of these objects, the dynamical MF theory appears suitable to address this
problem.

6.1 Comparison to simulations

In comparing the Press & Schechter theory with numerical simulations, the halos are typically extracted by
means of an overdensity criterion, as in the DENMAX algorithm, or through the famous friends-of-friends
algorithm, based on percolation (see §2.2). These algorithms are parametric, in the sense that their result
depends on a free parameter, such as a threshold overdensity or a percolation parameter. The values of such
parameters can be weakly constrained through heuristic arguments based on spherical collapse.

In the case of the dynamical MF theory, collapse is defined in a precise way as the OC event. It is then not
opportune to compare the dynamical MF with the abundances of friends-of-friends or DENMAX halos; it is
instead opportune to construct an algorithm able to reproduce those structures which are predicted to form
by the theory. The collapse definition used in the theory is based on orbit crossing, which corresponds to the
vanishing of the Jacobian determinant of the transformation from Lagrangian to Eulerian space (Eq. 1.41);
large densities are just a consequence of it. Orbit crossing is very easy to understand: mass elements coming
from far away get very near. However, OC is defined on a smoothed field, while small-scale structure is always
present; the most important hypothesis of the dynamical MF theory is that small-scale structure does not
dramatically influence larger-scale dynamics. The likely effect of small-scale structure is to spread collapsed
regions, thus lowering the actual density (and avoiding the formation of real caustics). It is then possible
to clarify why an overdensity criterion, which would anyway be parametric, can be not suitable to find OC
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regions: such a criterion would preferentially select caustics with more compact (Eulerian) geometry, which,
when spread by small-scale structure, would tend to remain at high density, while filamentary or pancake-like
caustics would be spread to lower effective densities.

In Monaco (1996a) the following algorithm was proposed as a natural implementation of OC in realistic
situations, as, e.g., an N-body simulation:

∃q1,q2 : |q1 − q2| ≥ L, |x(q1, t) − x(q2, t)| < ε, ε ≪ L. (6.1)

In other words, mass elements in a neighborhood of size ε of the Eulerian point x belong to a multi-stream
region, on scale ≥ L, if at least two mass elements q1 and q2 come from a distance greater than L. This
algorithm appears simple to implement in a numerical simulation, but its success does not appear guarenteed.
For this definition to make sense, it is necessary to find an interval of ε values, connected with the typical
dimension of a structure on a certain scale, for which the determination of the collapsed regions is stable; in
other words, ε does not have to be a free parameter. The quantity L highlights that this definition is naturally
scale-dependent; it has to be put in relation with the smoothing radius, and then with the resolution Λ. The
exact relation has to be chosen so as to optimize the dynamical predictions; this optimization also has to
allow for the shape of the filter: the Gaussian filter is expected to be prefered. This procedure is analogous
to what has been done for the truncated Zel’dovich approximation (see §1.2.6).

This comparison between theory and simulations will allow us to clarify whether and to what extent the
total mass of a structure is a well defined quantity, and what a structure exactly is; indeed, the particles
defined as belonging to a structure are not only those in its densest, central part, but all the particles which
have got in “dynamical contact” with the structure by getting into its multi-stream region.
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