Life in a Cosmic Context, Sept 15-17, 2015, SISSA, Trieste

Gas-phase formation routes of simple prebiotic molecules in the interstellar medium

Nadia Balucani^{1,2} & Cecilia Ceccarelli²

¹DCBB, Università di Perugia, Perugia, Italy ²IPAG, Université Grenoble Alpes, France

Basic steps in the origin of life

Gerald F. Joyce, Nature (2002)

this contribution is focused on the <u>chemical</u> <u>evolution</u> which has taken place during the <u>early</u> <u>steps</u> along this sequence of events

Very first steps in the origin of life: exogenous delivery or local formation of prebiotic molecules?

Chemical composition: Universe vs human body

Identified interstellar and circumstellar molecules/ions

2 atoms

AIF AICI C₂ CH CH⁺ CN CO CO⁺ CP CS CSi HCl H₂ KCl NH NO NS NaCl OH PN SO SO⁺ SiN SiO SiS HF SH FeO S₂ CF⁺ O₂ PO SH⁺ AIO ArH⁺ NO⁺ TiO HCI⁺

3 atoms

C₂ C₂H C₂O C₂S CH₂ HCN HCO HCO⁺ HCS⁺ HOC⁺ H₂O H₂S HNC HNO MgCN MgNC N₂H⁺ N₂O NaCN OCS SO₂ c-SiC₂ CO₂ NH₂ H₃⁺ AINC FeCN KCN SINC HCP CCP SICSI CCN TiO₂ HO₂ 4 atoms

c-C₃H I-C₃H C₃N C₃O C₃S C₂H₂ CH₂D⁺ HCCN HCNH⁺ HNCO HNCS HOCO⁺ H₂CO H₂CN H₂CS H₃O⁺ $NH_3 SiC_3 C_3N^- PH_3 HCNO HOCN HCCO NCCP MgCCH HMgNC I-C_3H^+ H_2O_2$

5 atoms

C₅ C₄H C₄Si I-C₃H₂ c-C₃H₂ CH₂CN CH₄ HC₃N HC₂NC HCOOH CH₂NH H₂C₂O H₂NCN HNC₃ SiH₄ H₂COH⁺ C₄H⁻ CNCHO NCCNH⁺ SiH₃CN NH₃D⁺ H₂NCO⁺ CH₃O HNCNH

6 atoms

 C_5H C_5O C_2H_4 CH_3CN CH_3NC CH_3OH CH_3SH HC_3NH^+ $HC_2CHOHCONH_2H_2C_4$ C_5N HC_4N $c-H_2C_3O$ $CH_2CNH C_5N^- C_5S CNCHNH$

7 atoms

from www.astrochymist.org

C₆H CH₂CHCN CH₃C₂H HC₅N HCOCH₃ NH₂CH₃ c-C₂H₄O CH₂CHOH C₆H⁻

8 atoms

CH₃C₃N HCOOCH₃ CH₃COOH C₇H H₂C₆CH₂OHCHOCH₂CHCHO C₂H₆ CH₂CCHCN NH₂CH₂CN $(NH_2)_2CO$ CH₃CHNH Only 37 species do not contain carbon !!

9 atoms

CH₃C₄H CH₃CH₂CN (CH₃)₂O CH₃CH₂OH HC₇N C₈H CH₃CONH₂ C₈H⁻ CH₂CHCH₃ CH₃CH₂SH

10 atoms

+ PAHs family $CH_{3}C_{5}N$ (CH_{3})₂CONH₂CH₂COOH CH₃CH₂CHO CH₂OHCH₂OH \geq 11 atoms

 HC_9N CH_3C_6H C_6H_6 $HC_{11}N$ $CO(CH_2OH)_2$ $HCOOC_2H_5$ CH_3COOCH_3 C_3H_7CN $C_{14}H_{10}^+$ C_{60} C_{60}^+

Simple organic molecules: are they the link between matter in the Universe and matter in living entities?

	gas-phase molecules	potential precursor of		
Figure and	with C-N bonds (e.g. HCN, CH ₃ CN, C ₂ N ₂ , HCCCN, CH ₂ NH, C ₂ H ₃ CN)	aminoacids & nucleic bases		
	with C-O bonds (e.g. H_2CO , CH_3OH , CH_3COH , CH_3CHO , (CH_2OH) ₂ , CH_2OHCHO)	sugars & aminoacids		
	with C-C multiple bonds (e.a. from C ₂ H ₂ up to	long carbon chain molecules. PAHs		
If we agree that the answer is yes,				

we need to face another question: how were they formed to begin with?

The chemistry of the interstellar medium: a multidisciplinary approach

taken from Eric Herbst 2006 (Interstellar Clouds) when he started considering grain chemistry for the formation of more complex molecules: GAS-PHASE MODEL NETWORKS

> 4,400 reactions; 10-20% "studied"; 450 species through 13 atoms in size

elements: H, He, N, O, C, S, Si, Fe, Na

elemental abundances: "low metal"

photodestruction: external, internal (via

Successes for quiescent cores:

in 9 years this percentage has not changed much; more recent models: 8000 reactions involving also negative ions

(1)Reproduces 80% of abundances including ions, radicals, isomers

(2)Predicts strong deuterium fractionation

Dust particles and icy mantles: preferential sites to induce chemical reactivity?

The ISM ice composition

Dust particles and icy mantles: preferential sites to induce chemical reactivity?

<u>Degrees of saturation</u>: in the ISM there are completely saturated (e.g. CH_4 , CH_3NH_2 , CH_3OH), partially saturated (e.g. $CH_3CH=CH_2$, $CH_2=NH$, H_2CO) and strongly unsaturated molecules (e.g. C_2H_2 and cyanopolyynes, HCN, PAHs) in the presence of abundant hydrogen atoms/molecules

Different formation routes?

fully hydrogenated species: ice induced processes unsaturated species: gas phase processes

Garrod & Herbst, A&A 2006: ice induced chemistry responsible for the formation of most complex organic molecules (missing gas phase routes of formation)

... missing gas phase routes of formation ...

Is that true?

many gas-phase routes have actually been overlooked and not considered in the astrochemical models, while their inclusion with the parameters determined in laboratory experiments or via accurate theoretical calculations could be decisive in reproducing the observed abundances of complex molecules Following the observation of relatively complex molecules also in very cold interstellar objects (no mobility, no easy desorption), in Grenoble we have started a systematic search for new formation routes in the gas phase by: Following the observation of relatively complex molecules also in very cold interstellar objects (no mobility, no easy desorption), in Grenoble we have started a systematic search for new formation routes in the gas phase by:

- 1) extensively searching the literature for previously overlooked bimolecular reactions in the gas phase;
- 2) making use of recent experimental results where the reactions of interest have been investigated under the appropriate experimental conditions (low T and P)
- 3) guiding theoretical chemists in the choice of reactions for which laboratory experiments are extremely difficult (if not impossible)
- 4) testing the new formation routes in astrochemical models

1) extensively searching the literature for previously overlooked bimolecular reactions in the gas phase

methyl formate formation: unsolved puzzle O grain surface chemistry invoked 1) extensively searching the literature for previously overlooked bimolecular reactions in the gas phase

gas phase reactions leading from dimethylether to methyl formate

 $CI/F + CH_3OCH_3 \rightarrow CH_3OCH_2 + HCI/HF$

 $O + CH_3OCH_2 \rightarrow HCOOCH_3 + OH$

Experimental studies: 1) Wallington T. J., Skewes L. M., Siegel W. O., Wu C.-H., Japar S. M., 1988, Int. J. Chem. Kinetics, 20, 867; 2) Hoyermann K., Nacke F., 1996, Symp. Int. Combust. Proc. Vol. 26, Elsevier, Amsterdam, p. 505

Theoretical study of O + CH₃OCH₂: Song X., Hou H., Wang B., 2005, Phys. Chem. Chem. Phys., 7, 3980

MNRAS 449, L16-L20 (2015)

Formation of complex organic molecules in cold objects: the role of gas-phase reactions

Nadia Balucani,^{1,2,3} Cecilia Ceccarelli^{2,3}* and Vianney Taquet⁴

Abundance of dimethyl ether as a function of the abundance of methyl formate in different ISM sources r = correlation coefficient + power-law index

Jaber, Ceccarelli, Kahane, Caux ApJ 2014, 791:29 making use of recent experimental results where the reactions of interest have been investigated under the appropriate experimental conditions (low T and P)

 $\begin{array}{l} OH + CH_{3}OH \rightarrow CH_{3}O / CH_{2}OH + H_{2}O \\ k (300 \text{ K}) = 9 \times 10^{-13} \text{ cm}^{3} \text{ molec}^{-1} \text{ s}^{-1} \\ E_{a} = 3 \text{ kJ/mol} (CH_{2}OH + H_{2}O) \\ 15 \text{ kJ/mol} (CH_{3}O + H_{2}O) \end{array}$

nature chemistry

Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling

Robin J. Shannon¹, Mark A. Blitz^{1,2}, Andrew Goddard¹ and Dwayne E. Heard^{1,2*}

Despite the presence of an entrance barrier, the rate coefficient at 63 K was found to be larger than that at 200 K. Deviations from Arrhenius behavior are quite common. In some cases they are associated to the tunnelling effect...

According to master equation calculations explicitly considering the tunnelling effects, at temperatures lower than 200 K the lifetime of the van der Waals complex is very long and tunnelling towards CH_3O+H becomes the dominant channel (99%)

Not only is the reaction several orders of magnitude faster than suggested by room temperature experiments, but the dominant products are CH_3O+H and not CH_2OH+H

CH₃O (methoxy radical) has been recently observed by Cernicharo

This CH_3O formation route in the gasphase is very efficient also in cold clouds and can account for the observed amount

3) guiding theoretical chemists in the choice of reactions for which laboratory experiments are difficult (if not impossible)

formamide formation in the gas phase

 $NH_2 + H_2CO \rightarrow HCONH_2 + H$

both NH₂ and H₂CO are abundant species in cold clouds

- previously disregarded because the similar reaction $OH + H_2CO$ is slow and characterized by a significant energy barrier

3) guiding theoretical chemists in the choice of reactions for which laboratory experiments are difficult (if not impossible)

Rate coefficient as a function of T (10-300 K): α =2.6×10⁻¹² cm³ s⁻¹, β = -2.1, γ = 26.9

the proposed mechanism can well reproduce the abundances of formamide observed in two very different interstellar objects: the cold envelope of the Sun-like protostar IRAS16293-2422 and the molecular shock L1151-B2

there is no need to invoke grain-surface chemistry to explain the presence of formamide provided that its precursors, NH₂ and H₂CO, are available in the gas-phase

Barone, Latouche, Skouteris, Vazart, Balucani, Ceccarelli, Lefloch MNRAS 2015, in press

Summary

1) Gas phase reactions are major actors in the formation of relatively complex organic molecules in the cold objects of the interstellar medium (methoxy radical, dimethylether, methyl formate, formamide)

> This challenges the exclusive role of grain surface chemistry and favours a combined grain-gas chemistry

- Hydrogenation of simple molecules (CO, C₂, HCN ⊃ CH₃OH, C₂H₆, CH₃NH₂) is still the realm of grain surface chemistry, but molecular complexity can be achieved also in gas phase reactions leading to or involving unsaturated species
- 3) More work in progress. Other examples: cyanomethanimine formation or methanimine dimerization (see the oral contributions by Fanny Vazart and Marzio Rosi)

Gas-phase prebiotic chemistry: the first chemical step in abiogenesis?

physics

chemistry of increasing complexity

1 5.0 KV X15.0K

biology

Gas-phase prebiotic chemistry: the first chemical step in abiogenesis?

Simple as they might seem compared to other processes of relevance in the study of the origin of life, the formation mechanisms of many of the observed molecules and radicals are far from being understood, while a comprehension of those processes can help to set the stage for the emergence of life to occur.

ies in the harsh chemical tellar tellar the solar the solar the solar tellar the solar the solar tellar tellar the solar tellar tel

UNJECTS HIVE HIGH.

The aggregation of H, O, N, C

The 50 molecules/ions detected in comets

CH CH⁺ NH CH₄ NH₂ NH₃ OH OH⁺ H₂O H_2O^+ NH_4^+ $HDO^-C_2^{12}C^{13}C^{-13}CN^-C_2H_2^-CN^-CN^+$ HCN HNC CO CO^+ DCN H¹³CN N_2^+ HCO HCO^{+} $CH_{3}CH_{3}$ $H_{2}CO$ $CH_{3}OH$ HS^{+} $H_{2}S$ $H_{2}S^{+}$ C_3 CH₃CN HNCO HNCO⁻ CH₃CHO CO₂ CO₂⁺ CS NH2CHO H2CS HCOOH NS HC3N $HCOOCH_3 OCS \bar{S}_2 SO_2$ from www.astrochymist.org

Organic molecules & meteorites

Marchison Metcorne			
Class of Compounds	ppm	n^a	
aliphatic hydrocarbons	>35	140	
aromatic hydrocarbons	15 - 28	87	
polar hydrocarbons	< 120	10°	
carboxylic acids	>300	48°	
amino acids	60	75°	
imino acids ⁴⁷	nd^{b}	10	
hydroxy acids	15	7	
dicarboxylic acids	> 30	17°	
dicarboximides	>50	2	
pyridine carboxylic acids	>7	7	
sulfonic acids	67	4	
phosphonic acids	2	4	
N-heterocycles	7	31	
amines	13	20°	
amides	nd^{b}	27	
polyols	30	19	

Table 1. Soluble Organic Compounds in the Murchison Mateorite⁹

> from Pizzarello, Acc. Chem. Res. 2006