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Climate models and planetary habitability

The determination of the physical conditions at the planetary surface
requires the use of climate models

— With climate models we can take into account the greenhouse
effect and a variety of other processes that affect the surface
planetary conditions

Climate models, originally developed for Earth studies, are becoming a
key tool for modeling planetary habitability

— The state-of-the-art models, called “Global Circulation Models”
(GCM), are extremely time consuming

— Simplified climate models are often used for studies of planetary
habitability
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Complexity of the
climate system:

Time scales of different
components of the
climate system

Atmosphere

Overall response time to heating

Typical spin-down time of wind if nothing is forcing it

Frontal system lifetime (1000s of km)

Convective cloud lifetime (100 m to km horizontal; up to
10 km vertical)

Time scale for typical upper-level wind (20ms™ Hto
cross continent (a few 1000 km)

Ocean

Response time of upper ocean (above thermocline) to heating
Response time of deep ocean to atmospheric changes

Ocean eddy lifetime (10s to 100 km)

Ocean mixing in the surface layer

Time for typical ocean current (cms™ 1) to cross ocean (1000s of km)

Cryosphere

Snow cover

Sca ice (extent and thickness variations)
Glaciers

Ice caps

Land surface

Response time to heating

Response time of vegetation to oppose excess evaporation
Soil moisture response time

Biosphere
Ocean plankton response to nutrient changes
Recovery time from deforestation

Lithosphere

Isostatic rebound of continents (after being depressed by
weight of glacier)

Weathering, mountain building

months
days
days
hours

days

months to years
decades to millennia
months

hours to days
decades

months

months to years
decades to centuries
centuries to millennia

hours
hours
days to months

weeks
years to decades

10 000s of years

1 000 000s of years



Reductionistic approaches
to tackle the complexity of the climate system

Reductionism |: the “spheres”
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Reductionistic approaches
to tackle the complexity of the climate system

Reductionism |I: biogeochemical cycles

Carbon

Phosphorus

Provenzale (2013)



Reductionistic approaches
to tackle the complexity of the climate system

Reductionism Ill: process decomposition
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Climate 1nstabilities

can drive the planet temperature out of the range of habitability

* The ice-albedo feedback perturbation

— If water and ice are present on
the planet, a decrease of
temperature will increase the
surface covered by ice AT«=0

— Ice has a very high albedo and
an increase of the ice extension
will cool the planet even more

— In extreme conditions, this increase increase
feedback may lead to a albedo ice, snow
“snowball planet”, i.e. a planet
fully covered by ice



Climate 1nstabilities

can drive the planet temperature out of the range of habitability

e The temperature-water vapour feedback perturbation

— If water is present on the planet, the
water vapour pressure rises with

temperature

— Water vapour is a strong greenhouse ATs>0

gas, and a rise of water vapour will
rise the temperature even more

— In normal conditions, this feedback

1s not catastrophic because the hincrease . increase
: reenhouse
cooling rate scales as ¢ T4 3 efrect evaporation



The classic habitable zone

Early calculations of planetary habitability were performed before
exoplanets were discovered

— J. Kasting and collaborators (Penn State University)
Simplified climate models

— Radiative-convective transport in a single atmospheric column
Calculated for stars of different spectral types

— The energy distribution of the stellar spectrum affects the albedo
Definition of the circumstellar habitable zone

— Interval of distances from the central star where a planet can have
surface conditions suitable for the long-term presence of liquid water

— Two different criteria are adopted to define the inner and outer edge of
the habitable zone



The classic habitable zone
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The 1nner edge of the habitable zone

 The runaway greenhouse mechanism

— If the temperature-water vapour feedback is extreme, the vapour
may reach the outer layers of the atmosphere

— In the outer layers the water molecules can be dissociated by high
energy stellar photons

— The hydrogen produced by photodissociation can be lost to space
— This chain of events is called the runaway greenhouse mechanism

— In the long term, this mechanism may lead to the disappearence of
liquid water on the planet

— The “runaway greenhouse” mechanism is used to define the inner
edge of the habitable zone
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The outer edge of the habitable zone

An increase of greenhouse gases in the planetary atmosphere makes
the planet habitable at lower levels of stellar flux, i.e. at larger
distances from the central star

To keep the planet habitable in the outer regions of the habitable zone
it is assumed that the planetary atmosphere 1s dominated by CO,

— as 1n the case of Mars

The amount of CO, that is able to warm the planet at low levels of
insolation is limited by the onset of CO, clouds with high albedo,
which would counteract the heating due to greenhouse effect

The outer edge is defined via the “maximum greenhouse” criterion, i.e.

the maximum amount of CO, before cooling of the clouds take place
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Mechanisms of climate stabilization

In the definition of the classic habitable zone it is assumed that the planet
has the capability of adjusting its level of CO, through a mechanism of
climate stabilization

The fact that Earth’ s climate has been relatively stable in the course of
geological time scales suggests the existence of a mechanism of
climate stabilization

This mechanism must have been able to stabilize the Earth’s climate
despite changes that have occurred in terms of solar radiation,
atmospheric composition and other factors

The mechanism invoked for the Earth is based on a CO, inorganic cycle
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The CO, cycle of climate stabilization

1. - Weathering
processes remove
CO, from the
atmosphere

2. - The chemical
products are
gradually deposited
to the bottom of the
oceans and
eventually
subducted, due to
tectonic activity

n

Land

CaSI03 +2 602
+H20 weatherin
Ca** + 2HCOg + SIO,

3.-CO, from the Earth’s
mantle 1s emitted to the

atmosphere by means of
volcanic activity

Cco,

Volcano
Ca*tt+2 HCOS

— 4 COCOS + 602 + l-l20

CaCOj + SiOy
metamorphism

CaSiO, + CO5

14



The CO, cycle of climate stabilization

The weathering efficiency increases with atmospheric temperature
The rate of CO, emission is independent of the atmospheric temperature

As a result, there 1s a negative feedback temperature-CO, that stabilizes
the climate

e The time scale of the cycle is estimated to be ~ 5 x 10° years
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The existence of tectonics and volcanism is necessary for the existence
of the CO, stabilization cycle

— In the present-day Solar System, only the Earth has these types of
geophysical activities

— The CO, cycle of climate stabilization i1s invoked in the definition
of the classic habitable zone

— How common this mechanism can be in terrestrial-type exoplanets
is currently the subject of studies of exoplanetary interiors

Subduction occurs at acean trenches, where dense The subducting seafloor crust may partially melt, New seafloor crust is created by
seafloor crust pushes under less dense continental with low-density material melting first and erupting _..-eruptions at mid-ocean ridges,
crust, thereby returning seafloor crust to the mantle. fram volcanoes as new continental crust. .~ where plates spread apart

ocean trench

Atlantic
Ocean

seafloor crust continental crust
convection cell

subduction zone : o

mid-Atlantic ridge

upper mantle
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Habitability under the planet surface

The definition of habitable zone relies on the concept of
surface habitability

— Habitability under the planet surface could be present in planetary
bodies outside the circumstellar habitable zone, in particular
beyond the outer edge

Temperature and pressure gradients may yield conditions
of habitability in the interior of planets or satellites

— Internals sources of heat yield a temperature gradient in the planet
interior

— The pressure gradient towards the planetary interior may improve
the conditions of habitability, e.g. by shifting the pressure above the
triple point of water
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Surface habitability
with Energy Balance Models (EBMs)

Simplified climate models aimed at predicting
the seasonal and latitudinal distribution
of the surface temperature

Energy balance climate model

[

Planet surface temperature

[]
Temperature-dependent habitability criterion

[

Planet surface habitability
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Energy balance models (EBM) of planetary climate

X=sin ¢

Dz' (1 = 332)

Emitted terrestrial
Absorbed

Horizontal
transport

or
ox

(¢ 1s the latitude)

solar radiation
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Brief summary of recents studies of planetary habitability
carried out at INAF-OATs
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Latitude (°)

Temperature seasonal cycle (EBM flux090)

Examples of application of the ESTM
Seasonal and latitudinal surface temperature of the Earth

Variation of stellar insolation
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Examples of application of the ESTM
Seasonal and latitudinal surface temperature of the Earth

Variation of surface pressure

Temperature seasonal cycle (EBM press05)
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Latitude (°)
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Examples of application of the ESTM
Seasonal and latitudinal surface temperature of an Earth-like planet

Temperature seasonal cycle (EBM Prot025)
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Variation of rotation period

Temperature seasonal cycle (EBM Prot2)
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Quantifying the habitability with
the liquid water criterion

The climate simulation yields
the surface temperature T(¢, t)
as a function of latitude and time

Habitability

Mean global fjﬁg do fOP dt [H(¢’ t) COS ¢]
annual h = : 2P

habitability

. Liquid water
. =t T
function ’ 0 otherwise
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At low pressure,
the mean planet temperature is not a good diagnostic of

a= 0.90 AU, log p(bar)=-1.11, h= 0.24

....................................... \
V'

e o - - - == - -

Mean planet temperature
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0
Latitude [ ]

Evaporating planets inside the “habitable zone”

habitability

Liquid water interval
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itable zone

Pressure dependence of the hab
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Mean annual flux

Effects of eccentricity
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The atmospheric mass habitable zone
for complex life and atmospheric biomarkers
Obtained using the temperature limits 0°C < T < 50°C

Silva et al. (2017)
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