Astrochemistry (1)

Planets and Astrobiology (2019-2020) G. Vladilo

Molecular spectra

- Molecular spectra are much more complex than atomic spectra
- Molecular lines result from the combination of different types of transitions
 - Electronic
 - Vibrational
 - Rotational

Electronic transitions in molecules

- Electronic transitions in molecules are equivalent to atomic transitions
 - Typical energies are in the order of some eV
 - They generally lie in the optical/UV spectral range
 - When observed at high spectral resolution, they can be solved in vibrational sub-levels which, in turn, can be solved in rotational sub-levels

Quantization of vibrational and rotational motions

- Motions of atomic nuclei with respect the molecule's center of mass
- Main physical quantities that describe vibrational and rotational motions:
 - Total angular momentum

The symbol J is used for diatomic molecules

For polyatomic molecules the treatment is more complex

- Reduced mass

For diatomic molecules $\mu = m_1 m_2 / (m_1 + m_2)$

Vibrational transitions

- Between energy levels that result from the quantization of vibrational modes
 - They are mostly "stretching" modes

(variations of interatomic distances)

Stretching is the only possible mode for diatomic molecules

Complex molecules also have "bending" and "deformation" modes

• The quantum number v indicates the vibrational state of the system

(for v=0 the vibrational energy is not null)

$$E^{\mathrm{v}ib} = \hbar\omega_e(\mathrm{v} + \frac{1}{2})$$

$$v = 0, 1, 2, \dots$$

As v varies ina given molecule, the vibrational energy levels are equidistant For different molecules the separation of the vibrational levels is a function of the reduced mass μ

> For instance, H₂, HD e D₂ produce different vibrational spectra

Vibrational transitions

• The typical energies of vibrational modes lie in the range 0.1 e 0.3 eV

– The corresponding wavelength λ lies in the near IR

CO:
$$v = 1 - 0$$
 band $\lambda = 4.67 \ \mu m \Leftrightarrow 2140 \ cm^{-1}$
 $v = 2 - 0$ band $\lambda = 2.35 \ \mu m \Leftrightarrow 4250 \ cm^{-1}$
H₂: $v = 1 - 0$ band $\lambda = 2.40 \ \mu m \Leftrightarrow 4150 \ cm^{-1}$

The energy of the transitions scales as λ^{-1} and can be expressed in cm⁻¹

Conversion factor: $1 \text{ cm}^{-1} = 1.24 \text{ x} 10^{-4} \text{ eV}$

- Every chemical group has a characteristic vibrational energy
 - Examples: C-H stretch, C=H stretch, CH₂ angle bending

<u>Different</u> complex molecules that have in common a chemical group will show the <u>same</u> vibrational transitions characteristic of that group Problem of identification of complex molecules

Rotational transitions

- Result from the quantization of the molecular rotational energies
 - The rotation can take place around the main axis of inertia
 - For complex molecules it could be a form of internal rotation
- Rotational transitions have energies in the order of $\sim 10^{-3} \text{ eV}$
 - The wavelength λ generally lies in the millimetric or sub-millimetric spectral bands
- Rotational states are identified with the quantum number J

Example: CO

CO J = 1 - 0 $v = 115 \text{ GHz} \Leftrightarrow \lambda = 2.6 \text{ mm}$ J = 2 - 1 $v = 230 \text{ GHz} \Leftrightarrow \lambda = 1.3 \text{ mm}$ J = 3 - 2 $v = 345 \text{ GHz} \Leftrightarrow \lambda = 0.87 \text{ mm}$

Roto-vibrational transitions

- Vibrational transitions can be decomposed in rotational levels, the combination of the two giving rise to a roto-vibrational band
- Selection rules:
 - There are no restrictions on the variation of the vibrational state, Δv
 - Variations of angular momentum are constrained by the selection rules $\Delta J = 0, \pm 1$

Depending on the value ΔJ the bands are called as follows:

 $\Delta J = -1$ "P branch" $\Delta J = 0$ "Q branch" (but $J=0 \rightarrow J=0$ is forbidden) $\Delta J = +1$ "R branch"

H₂ absorption lines

• Observations with high resolution spectroscopy show the extreme complexity of the molecular spectrum

H₂ emission

- Molecular hydrogen is a symmetric molecule
 - The electric dipole moment is zero
 - Rotational transitions are forbidden, even though electronic transitions are allowed
- Quadrupole transitions are possible, but very weak
 - Their energies are much higher than the typical rotational energies
 - Can only be observed in relatively warm regions
 Thanks to the abundance of H₂ some of these transitions have been observed in the mid IR
- Due to the lack of H_2 emissions it is hard to map the distribution of molecular hydrogen in galaxies
 - UV absorptions require (rare) bright background sources and are not suited to map the molecular gas, especially in dust-rich regions, where the background sources are obscured

Molecular emission spectra in the millimetric band

- CO emission lines J = 1-0 at 2.6 mm
- Advantages
 - CO is relatively abundant and has rotational transitions (not a symmetric molecule)
 - the dipole moment is relatively small and the molecule can be easily excited also in gas with relatively low density
- Used as a tracer of H₂
- If the emission is too strong one can use less abundant istotopes, such as ¹³CO, to obtain optically thin emissions

Molecular emission in the millimetric band

- OH, NH₃, H₂O (1965)
 - In the radio band
- First measurement of CO emission (1970)
- Maps of the Galactic distribution of CO (1970's and 1980's)
 Tracer of molecular gas in the Galaxy

Chemical bonds of interstellar molecules

- Atoms in interstellar molecules are held together by covalent bonds
 - Superposition of the atomic orbitals
 - Sharing of the eletrons in external shells
- Typical energies of covalent bonds
 - $\sim 100 \text{ kcal/mol} \Rightarrow \sim 4 \text{ eV}$
- In the harsh conditions of the ISM the molecules can be easily dissociated
 - Kinetic temperatures in excess of $\sim 10^4$ K would dissociate molecules by collisions
 - Photons with energies up to13.6 eV can penetrate HI regions and photodissociate molecules
 - Interstellar molecules can survive in cold regions protected by the interstellar radiation field

Interstellar chemical reactions

Formation of bonds

- Radiative association
 Between neutrals and ions
- Reactions on the surface of dust grains

Also between neutrals example: H_2 formation

Destruction of bonds

- Photo-dissociation
- Dissociative recombination

 $X^+ + Y \rightarrow XY^+ + h\nu$ $X + Y:g \rightarrow XY + g$

 $XY + h\nu \rightarrow X + Y$ $XY^+ + e \rightarrow X + Y$

H₂ formation on dust grains

Credits: van Dishoeck

- .3+4 second Hatom collides with grain: explores surface and encounters first Hatom
- 5. H2 formation on surface H2 ejected from surface

Interstellar molecules

- About two hundreds gas-phase molecular species have been detected so far
- Besides simple molecules with a few atoms, also complex molecules with a relatively large number of atoms have been detected

http://www.astro.uni-koeln.de/cdms/molecules

– Observational bias:

Different types of molecules are observed in different types of interstellar or circumstellar regions Some of them are only observed in dense molecular clouds

Symmetric molecules are harder to detect: they could be more abundant than what observed

					Number of A	Atoms				
2	3	4	5	6	7	8	9	10	11	13
H ₂	C3	c-C ₃ H	C ₅	C5H	C ₆ H	CH ₃ C ₃ N	CH ₃ C ₄ H	CH ₃ C ₅ N?	HC ₉ N	HC ₁₁ N
A1F	C_2H	$1-C_3H$	C_4H	$1-H_2C_4$	CH ₂ CHCN	$HCOOCH_3$	CH ₃ CH ₂ CN	(CH ₃) ₂ CO		
A1C1	C ₂ O	C_3N	C ₄ Si	C_2H_4	CH_3C_2H	CH ₃ COOH?	(CH ₃) ₂ O	NH ₂ CH ₂ COOH?		
C ₂	C_2S	C ₃ O	$1-C_3H_2$	CH ₃ CN	HC₅N	C_7H	CH ₃ CH ₂ OH			
CH	CH_2	C ₃ S	$c-C_3H_2$	CH_3NC	HCOCH ₃	H_2C_6	HC7N			
CH^+	HCN	C_2H_2	CH ₂ CN	CH ₃ OH	NH ₂ CH ₃		C_8H			
CN	HCO	$CH_2D^+?$	CH_4	CH₃SH	e-C ₂ H ₄ O					
CO	HCO+	HCCN	HC_3N	HC_3NH^+						
CO+	HCS+	HCNH+	HC2NC	HC ₂ CHO						
CP	HOC+	HNCO	HCOOH	NH ₂ CHO		Inte	rstellar r	nolecules		
CSi	H_2O	HNCS	H_2 CHN	C ₅ N		mu		noiceures		
HC1	H_2S	HOCO+	H_2C_2O		liste	ed accord	ling to th	e number o	of atoi	ms
KC1	HNC	H_2CO	H ₂ NCN			Elementer		l_{norm}	\mathbf{O}	
NH	HNO	H ₂ CN	HNC ₃			Enrenire		narmey (200	<i>(</i>)	
NO	MgCN	H ₂ CS	SiH ₄							
NS	MgNC	$H_{3}O^{+}$	H_2COH^+							
NaC1	N_2H^+	NH_3								
OH	N ₂ O	SiC ₃								
PN	NaCN		A 11	1 1	• . 1	1	1	C		•
SO	OCS		All molecules with a large number of atoms are organic							
SO+	SO ₂				1				4 1	•
SiN	$c-SiC_2$		Atoms with low cosmic abundance are only detected in							
SiO	CO_2		sma	small molecules						
SiS	NH_2		SIIIa							
CS	H_3^+									
HF										

 TABLE 1
 Interstellar and circumstellar molecules as compiled by Al Wootten (see text)

Note that observations suggest the presence of large PAHs and fullerenes in the interstellar gas (Tielens et al 1999, Foing & Ehrenfreund 1997).

Small interstellar molecules

- Found in *diffuse* molecular clouds

 molecular clouds with relatively low extinction
- Large molecules are absent in *diffuse* clouds because of:
 - physical conditions

diffuse clouds are less protected from interstellar radiation field than denser molecular clouds

- observational limitations

diffuse clouds have relatively low column densities and this fact makes hard to detect large molecules, characterized by a low abundance

Weight	Species	Method	Target	N(X)/N _H
2	H ₂	UV	ζ Oph	0.56
3	HD	UV	ζ Oph	4.5 (-7)
3	H ₃ +	IR	ζ Per	5.1 (-8)
13	СН	Optical	ζ Oph	1.5 (-9)
13	CH+	Optical	ζ Oph	2.4 (-8)
14	¹³ CH ⁺	Optical	ζ Oph	3.5 (-10)
15	NH	Optical	ζ Oph	6.2 (-10)
17	OH	UV	ζ Oph	3.3 (-8)
24	C ₂	Optical	ζ Oph	1.3 (-8)
25	C_2H	mm abs.	BL Lac	1.8 (-8)
26	CN	Optical	ζ Oph	1.9 (-9)
27	HCN	mm abs.	BL Lac	2.6 (-9)
27	HNC	mm abs.	BL Lac	4.4 (-10)
28	N ₂	UV	HD 124314	3.1 (-8)
28	CO	UV	X Per	6.4 (-6)
29	HCO+	mm abs.	BL Lac	1.5 (-9)
29	HOC+	mm abs.	BL Lac	2.2 (-11)
29	¹³ CO	UV	X Per	8.9 (-8)
29	C ¹⁷ O	UV	X Per	7.4 (-10):
30	C ¹⁸ O	UV	X Per	2.1 (-9):
30	H ₂ CO	mm abs.	BL Lac	3.7 (-9)
36	C3	Optical	ζ Oph	1.1 (-9)
36	HCl	UV	ζ Oph	1.9 (-10)
38	C_3H_2	mm abs.	BL Lac	6.4 (-10)
44	CS	mm abs.	BL Lac	1.6 (-9)
64	SO ₂	mm abs.	BL Lac	≤8.2 (−10)

Table 2 Molecules detected in diffuse molecular clouds

Complex interstellar molecules

("complex" for interstellar standards, not for chemists)

- Complex interstellar molecules are hydrocarbons
- They are found in:
 - star-forming regions
 - circumstellar envelopes of evolved, late-type stars in the Asymptotic giant branch (AGB)
 - dense clouds in the direction of the Galactic center

Herbst & van Dishoeck (2009)

Ez	xamp	les of	inter	stella	ar hyc	lrocar	bons
----	------	--------	-------	--------	--------	--------	------

Table 1 Complex organic interstellar molecules (≥ 6 atoms)

Species	Name	Source	
Hydrocarbons			
C_2H_4	Ethene	circ	
HC ₄ H	Butadiyne	circ	
H_2C_4	Butatrienylidene	circ, cc, lc	
C5H	Pentadiynyl	circ, cc	
CH_3C_2H	Propyne	cc, lc	
C ₆ H	Hexatriynyl	circ, cc, lc	
C ₆ H ⁻	Hexatriynyl ion	circ, cc, lc	
H_2C_6	Hexapentaenylidene	circ, cc, lc	
HC6H	Triacetylene	circ	
C_7H	Heptatriynyl	circ, cc	
CH ₃ C ₄ H	Methyldiacetylene	сс	
CH ₃ CHCH ₂	Propylene	сс	
C_8H	Octatetraynyl	circ, cc	
C_8H^-	Octatetraynyl ion	circ, cc	
CH_3C_6H	Methyltriacetylene	сс	
C ₆ H ₆	Benzene	circ	

Abbreviations: circ, circumstellar envelope around evolved star/protoplanetary nebula; cc, cold cloud core; hc, hot core/corino; lc, lukewarm corino; gc, galactic center cloud; of, outflow. Not all of these molecules fulfill the strict criteria for identification listed in Section 3.3.

Saturation of interstellar organic molecules

- Saturated hydrocarbons
 - The chain of carbon atoms are held by single bonds
 - The remaining carbon bonds are saturated with hydrogen atoms
- Interstellar organic molecules are usually not saturated
 - Example of <u>saturated</u> molecule <u>not detected</u> in the ISM Cyclohexane, C_6H_{12}

- Example of <u>unsaturated</u> molecule <u>detected</u> in the ISM Benzene, C_6H_6

Benzene

- Aromatic ring
 - Stable electronic structure that results from the superposition of atomic orbitals; the electrons are delocalized and shared by all atoms
- Plays an important role in astrochemistry
 - Starting point for the formation of complex aromatic compounds

PAHs=Polycyclic Aromatic Hydrocarbon

Formamide

An interstellar molecule of prebiotic interest

Detected multiple rotational transitions in the sub-millimetric spectral range in molecular clouds at different locations in the Galaxy

Complex organic molecules in the interstellar medim

- Glycolaldehyde ($C_2H_4O_2$)
 - Simplest sugar
 - First intermediate product of the reaction which starts with formaldehyde (H_2CO) and leads to the formation of various sugars and finally of ribose, one of the DNA building blocks

Generic formula for sugars $C_n(H_2O)_n$

- Detection of glycolaldehyde (CH₂OHCHO)
 - First detection of interstellar sugar
 - Detected in the millimetric band towards Sagittarius
 B2(N), a source in the direction of the Galactic center (Hollis et al. 2000)
 - Also observed by ALMA around a young, solar-type star

Complex organic molecules in the interstellar space The case of glycine

- Glycine is the simplest aminoacid found in biological proteins (NH₂CH₂COOH)
 - Its existence in the interstellar space would demonstrate the existence of chemical pathways potentially able to synthesise basic ingredients of life molecules in the interstellar space
 - The "lateral group" R is simply a hydrogen atom

Tentative evidence for interstellar glycine

- Glycine (NH₂CH₂COOH)
 - Several emission lines attributed to interstellar glycine have been reported

 The identification is not confirmed by a subsequent analysis performed by testing a larger number of lines expected for glycine

Snyder et al. (2005)

Which is the maximum complexity of interstellar organic molecules in the gas phase?

As molecular complexity increases, the identification of the molecule tends to become uncertain

Gas-phase molecules with a high number of atoms could be present in the interstellar medium, even though it is difficult to prove their existence