

Experiment Units to investigate biological systems for Space Life Sciences

5th workshop of the Italian Astrobiology So<mark>ciety</mark> «Life in a cosmic contest» Trieste, 15-17 September 2015

> Kayser Italia S.r.l. Via di Popogna 501 57128 – Livorno (Italy) www.kayser.it kayser@kayser.it

Agenda

•Kayser Italia in pills;

- Introduction to a space experiment;
- •Experiment Hardware for Life Sciences.

•Kayser Italia is a private System Engineering company. KI has its core business into the space industry;

•In the last twenty-five years, Kayser Italia has participated to **63** space missions with **97** payloads developed both as prime- or sub-contractor to many ESA and ASI programs;

•A multidisciplinary staff of 50 highly specialised engineers and scientists, with expertise in electronics, aeronautics, mechanics, thermodynamics, physics, computer science, optics, chemistry, cell and molecular biology.

References: www.kayser.it

Download Kayser catalogue at http://www.kayser.it/index.php/catalog

Kayser Italia in pills

Located in the south area of Livorno, the company has 5,000 sq. meters of property, organized into offices, meeting rooms, conference room, laboratories, clean room, manufacturing, inspection and integration area, and an User Support Operation centre to support operation on-board ISS.

The payloads developed by Kayser were flown on:

- •the International Space Station (ISS);
- •the Chinese Shenzhou spaceship (神舟).
- •the Shuttle Transportation System (STS) and Space X Dragon capsule
- •the Japanese module (HTV);
- •the European module (ATV);
- •the Russian capsules (Бион, Фотон, Союз, Прогресс)

Kayser Italia in pills

Agenda

- •Who is Kayser Italy;
- Introduction to a space experiment;
- •Experiment Hardware for Life Sciences.

What is new in a space experiment? Nothing but practise

1- How is an experiment to be conducted2- What equipment to conduct that experiment

TEAM PLAYERS:

Space agency

Industrial partner Output Experiment Hardware development

Experiment Scientific Requirements

Introduction to a "space experiment"

In the frame of ESA projects requirements are collected into a dedicated document: the Experiment Scientific Requirements doc, ESR.

Reference: ESA-HSF-ESR-SPHINX Issue 2, Rev. 0 Date: 3rd May 2010

Table of contents

1	INT	RODUCTION	5
2	GEN	VERAL DESCRIPTION	6
3	SCI	ENTIFIC REQUIREMENTS ON OPERATIONS	8
	3.1	Experiment protocol	8
	3.2	Communications requirements	.11
	3.3	Overview Experiment Timeline and associated Functional Objectives .	12
4	EXP	PERIMENT OUTPUTS	.18
	4.1	Science deliverables	.18
	4.2	Planned analyses	.18
А	NNEX	- TEST REPORT	.19

Requirements analysis (RA)

- Collection of experiment requirements
- Evaluation and impact of experiment requirements

RA is a delicate and crucial step; RA does requires iteration; RA has a dramatic impact on the project success;

TIP 1: PI has to present the scientific idea in the clearest way, focusing on experiment requirements rather then technological solution

TIP 2: follow the "keep it simple" approach

Design and development of Experiment Hardware

- Basically, HW design, development and manufacturing is a responsibility of the Developer, i.e. the industrial partner;
- Requirements must be fulfilled by Design. Experiment Hardware design is driven by the Experiment Scientific Requirements (ESR);
- The Experiment Hardware will be tested by the PI during the EST campaign, namely a simulation of the experiment to be performed in space.

Agenda

- •Who is Kayser Italy;
- Introduction to a space experiment;

•Experiment Hardware for Life Sciences.

Life science experiments in space are conducted in order to study:

- the changes induced by the Space environment on biological systems;
- the possibility of life (and precursors).

We are looking to the possibility of surviving in hostile environment and countermeasures to be adopted (calcium loss, plant growth, genetic modifications...)

Cosmic radiation, electromagnetic fields, temperature, pressure, and gravity level deeply affect the organic life.

EUs & ECs Experiment Units and Experiment Containers

The EXPERIMENT UNITS:

The EU reduces a laboratory into a hand-sized electromechanical device which allow the autonomous execution of a scientific protocol on-board;

The EU is designed to provide all the chemicals required by the experiment;

The experiment is autonomously performed and electrically controlled by a timeline on the microcontroller;

Housekeeping data are recorded during the mission and downloaded at reentry.

The EXPERIMENT CONTAINERS:

The EC complement the EUs making possible to interface them with the incubator, providing electrical power, data transfer interfaces and additional containment for the chemicals.

Experiment Units protocol execution

Pre-flight stand by

Stage 2: Second Medium re-fresh

Stage 4: Fixation

Stage 1: First Medium re-fresh

Wase Wase Wase Heard Hea

Stage 3: Third Medium re-fresh

EU summary: No. of fluidic systems: 1

- Fluidic system:
- actuators: 5
- plungers: 5
- reservoirs: 5
- culture chambers: 1
- Size: 80X39X19 mm
- Weight: 104 g

Experiment Units protocol execution

Kubik (ESA) incubator onboard ISS

Each step of the Experiment Cycle represents an opportunity for a space company to business

ECCO (ESA) Temperature controlled containers

Features: Set of containers for passive transportation (in the range of -25°C to + 40°C) of biological material to/from ISS at controlled temperature. Can be transported using SpaceX, Soyuz, Progress, HTV, ATV.

Typical ECCO Performances Outer temperature 28°C EC temperature within the range 2° .. 10°C for 5 days and 4 hours Temperate slowly increases 10,4° after 5,5 days 11,0 after 5 days and 20 hours (end of data collection)

ECCO Transport Capabilities

ECCO: 4 Biolab EC 2 Kg each (STS) ECCO-b: 9 KIC or up to 1.5 Kg experiments (STS/Soyuz/Progress/HTV/ATV)

Mission support for experiment integration at the launch site

- Cape Canaveral, USA
- Bajkonur cosmodrome, Kazakistan

EXPERIMENT UNIT	NAME	SAMPLE	EXPERIMENT	
	STROMA	2D BMSCs Cell culture	Stroma 2003, Stroma2 2006, PITS 2007, MYO 2007, Sphinx 2010, SCD NATO, CYTO, ENDO 2015	
A CONCOMPANY	OCLAST	2D Osteoclast Cell culture	Oclast 2003 Oclast 2007	
	PHOTO	2D Chlamnidomonas r. Cell culture	PHOTO-I 2002 PHOTO-II 2005 Photo-Evolution 2011	
a a a a a	AT-SPACE	Arabidopsis seeds	AT-SPACE 2007 ArabidopS-ISS 2011	
	1.4	·· ··		

Kayser Italia Experiment Units

15/17-Sep-2015

			0.4
Ka	ayser Italia Experim	ent Units	
AEINOP05	aquaria	AENOP03 2008	
YENODUS	Xenopus laevis	XENORUS 2008	
RUALD	Cell culture	RESLEM 2011	
POALD	3D T-lymphocytes	ROALD 2008	
BASE-C	3D Aerobic Bacteria Cell culture	BASE-C 2008	
BASE-B	3D Anaerobic Bacteria Cell culture	BASE-B 2008	
P-Kinase	3D Monocytes Cell culture	P-Kinase 2007 BioS-SPORE 2011 NIH-1a 2014	
BIOKIN-4	Aerobic 3D bacteria Cell culture	BIOKIN-4 2007	

15/17-Sep-2015

15/17-Sep-2015

Kayser Italia Experiment Containers

EUs for Kubik and Biolab incubator facilities. Thirteen different EUs were developed, all of them flown, some EUs flown a few times

Kayser Italia hardware for radiation and microgravity experiments in space

Marco Vukich, Alessandro Donati & Valfredo Zolesi

Readicanti Lincei SCIENZE EISCHE EINATURAL NSR 202-48-0 Volume 25 Supplement I

DOI 10.1007/012210-012-0261-1

Springer

Review on Kayser Italia HW Rend. Fis. Acc. Lincei (2014) 25 (Suppl 1):S7-S11 DOI 10.1007/s12210-013-0261-1

BIOKIS: A Model Payload for Multidisciplinary Experiments in Microgravity

Marco Vukich, Pier Luigi Ganga, Duccio Cavalieri, Lisa Rizzetto, Damariz Rivero, Susanna Pollastri, Sergio Mugnai, Stefano Mancuso, et al.

Example of multidisciplinary mission on-board 2011 Endeavour Shuttle Microgravity Sci. Technol. DOI 10.1007/s12217-012-9309-6

The insertion of dosimeters into the EC, could allow ground testing with irradiation facilities, adding another important experimental factor for comparison.

R3D-B2 instrument was a LIULIN-type dosimeter situated inside the ESA Biopan-5 platform to measure radiation dose and flux outside the Foton M2 capsule.

15/17-Sep-2015

KI-MARK-HO-278

31

Kayser Italia was responsible for the development of the Matroshka Facility control electronics, flight software and EGSE.

The Matroshka Facility (ESA) was installed for one year outside the ISS Russian segment.

Matroshka measures the radiation dose at different depths in a human mannequin during an exposure to environmental conditions the outside and inside the International Space Station. Sensors within the manneguin measure radiation doses at organ sites such as stomach, lungs, kidney, colon and eyes. Active sensors measure different radiation levels on a real time basis, after exposure while passive sensors can be removed from the phantom for analysis after their return to Farth.

Experiment Hardware for Life Sciences

Sampling Units

In the frame of the ECMB project (Esobiologia e ambienti estremi: dalla Chimica delle Molecole alla Biologia degli estremofili) KI designed and developed the KI-SSC (Solfatara Sampling Container) to collect the extremophile specimens from the Solfatara Pisciarelli and to make experiments on *Sulfolobus solfataricus*, an *Archea* species, ubiquitous into the «solfatara».

ECMB team:

Institute of Biosciences and Bioresources-CNR (IBBR-CNR) of Napoli

University of Tuscia

SAPILNZA University La Sapienza

Kayser Italia

Sampling Container

Solfatara Pisciarelli is a shallow volcanic crater at Pozzuoli, a dormant volcano, which still emits jets of steam with sulfurous fumes.

Water parameters during sampling

- Temperature ~ 85°C
- pH ~ 2,5

Sampling Container

KI-SSC features:

KI-SSC will be entirely manufactured by AISI 316 stainless steel

Resistance to high temperature and low pH

KI-SSC will host 9 conical centrifuge tubes

KI-SSC allows accurate sampling:

- Statistically significant amount of sampling;
- Repeatable sampling.

Sampling Units

50 ml vented centrifuge tubes made of polypropylene

3D printed prototype of KI-SSC

Sampling Hardware for Life Sciences

Sampling

- Fundamental step for a scientific investigation;
- Reliable;
- Repeatible;
- Statistically significant;

It requires specific equipment which is dependent by:

The specimen kind (Biological sample, Chemical sample, Geological sample);

The media/substrate where the sample is (chemical composition of the media);

The operational environment;

The geography (distance from power resources, etc...); etc

Thus sampling campaigns (missions) can require a dedicated design, development and manufacturing of sampling equipment.

Particularly, a first engineering effort will be the selection of materials to be used into the manufacturing of the equipment:

- Resistance to environmental conditions;
- Level of containment;
- Chemically inert;

Especially for extreme environments...

Kayser Italia Space Life Sciences

BIOPAN Facility (ESA)

Kayser Italia was responsible for the development of Biopan electronics: signal acquisition board, microcontroller board, flight software, memory board and EGSE.

BIOPAN missions: Foton-8 in 1992 (QF); Foton-9 in 1994, Foton-11 in 1997, Foton-12 in 1999, Foton-M1 in 2002, Foton-M2 in 2005, Foton-M3 in 2007.

BIOPAN was developed in the early nineties as a multi-user experimental facility, designed to investigate the effect of the space environment on biological material as well as for carrying out material science investigations requiring exposure to the space environment. As such the experiments in BIOPAN are exposed to solar and space radiation

exposed to solar and space radiation, the space vacuum and weightlessness, or a selection thereof.

BIOPAN Facility (ESA)

PHOTO-I is placed in the bottom tray of the BIOPAN facility. Directly exposed to the harsh space environment conditions throughout the entire flight.

The PHOTO-I facility is a biological container provided of 16 culture chambers, where the photosynthetic organisms are located, immobilized in nutrients. The natural light to which the device is exposed on orbit is filtered (only visible and UV radiation reach the organisms) and its intensity is reduced. This is performed by optical filters

MISSIONS

FOTON-M1 PHO-TO-I launched in the ESA BIOPAN facility on October 15th, 2002.

FOTON-M2 PHO-TO-I launched in the ESA BIOPAN facility on May 31st,2005, return to ground June 16th, 2005.

ground June 10°, 2005.

BIOPAN is an ESA multi-user exposure facility, designed for exobiology, radiation biology, radiation dosimetry and material science investigations in space. The facility has been jointly developed by Kayser-Threde and Kayser Italia.

BIOBOX Facility (ESA)

Incubator facility for environmental control: Temperature; Atmosphere; Humidity, Stowage.

The BIOBOX incubator is a programmable space-qualified incubator for biology research in space. It offers a controlled thermal environment and it allows fully automatic execution of biological experiments, with no needs of commands during orbital flight.

All experiments are accommodated on the so called "Experiment Platform" that is a fully autonomous subsystem extractable from the incubator. That approach allows dealing with different mission scenarios, making possible a very late access to spacecraft integration a crucial aspect for biological experiments.

To rationalise the effects of weightlessness, an in-flight 1g centrifuge is installed into the BIOBOX, allowing for 1-g control experiments to be conducted on-board the spacecraft at the same time of samples exposed to the μ -g environment inside the incubator.

The BIOBOX was firstly developed in 1992 and since then it was flown on-board of Russian and Chinese unmanned capsules (FOTON-10 in 1995, FOTON-11 1997, FOTON-M3 2007, Shenzhou-8 2011) and the American manned shuttle (STS-95 in 1998).

Kayser Italia was responsible for the development of the Biobox electronics, between them: thermal assemblies, main control electronics with embedded display, mass memory.

Kayser Italia Space Life Sciences

Bioanalysers Bioanalysers: since 2009 KI was involved in three different ESA programs on bioanalysers for space activities.

• **MIDASS:** MIcrorganism Detection of Air Samples for Space by molecular biology. MIDASS targets nucleic acids (diagnostic) for environmental biomonitoring and planetary protection (clean room).

• **IBICA:** multipurpose platform for research and astronaut's health monitoring. IBICA targets proteins (proteomics).

• **BioanalysISS:** multipurpose platform for research using gene expression analyses. BioanalysISS targets nucleic acids (genomics).

Bioanalysers concept relies on:

a disposable cartridge;
fluorescence measurement.

•Marco Vukich, Head of Life Science <u>m.vukich@kayser.it</u> ++39 0586 562314

•Alessandro Donati, General Manager <u>a.donati@kayser.it</u> ++39 0586 562262

•Valfredo Zolesi, President v.zolesi@kayser.it ++39 0586 5621