

Víctor M. Rivilla

iALMA Fellow, Osservatorio Astrofisico di Arcetri September 15 2015, "Life in a cosmic context", Trieste, Italy

Maite Beltrán, Riccardo Cesaroni, Claudio Codella, Francesco Fontani, Paul Woods, Serena Viti, Paola Caselli, Anton Vasyunin, Hannah Calcutt

Image credit: ALMA (ESO/NAOJ/NRAO)/L. Calçada (ESO) & NASA/JPL-Caltech/WISE Team

- Astrophysics & Astrochemistry
- + geology, ecology, planetary science...

Origin of life?

Spontaneous generation on Early Earth?

Delivery of extraterrestrial material through e.g. meteorites?

Search for organic molecules in space The building blocks of life

How do we detect molecules? The fingerprints of interstellar molecules

• When molecules vibrate and rotate emit photons in the radio and (sub)millimeter spectrum.

• Each molecule produce a unique spectrum.

• Ground based and space telescopes are able to detect these photons.

IDENTIFICATION OF COMPLEX ORGANIC MOLECULES IN THE SPACE

Detection of "complex" organic molecules (COMs)

Species	Name	Source	Species	Name
Hydrocarbons			N-Containing	
C ₂ H ₄	Ethene	circ	CH ₃ CN	Acetonitrile
HC ₄ H	Butadiyne	circ	CH3NC	Methylisocyanide
H ₂ C ₄	Butatrienylidene	circ, ce, le	CH ₂ CNH	Keteneimine
C ₅ H	Pentadiynyl	cire, ce	HC ₁ NH ⁺	Prot. cyanoacetylene
CH ₁ C ₂ H	Propyne	cc, lc	C ₃ N	Cyanobutadiynyl
C ₆ H	Hexatriynyl	circ, ce, le	HC ₄ N	Cyanopropynylidene
C ₆ H ⁻	Hexatriynyl ion	circ, cc, lc	CH ₁ NH ₂	Methylamine
H ₂ C ₆	Hexapentaenylidene	circ, cc, lc	C ₂ H ₃ CN	Vinyleyanide
HC ₆ H	Triacetylene	circ	HC ₁ N	Cyanodiacetylene
C ₇ H	Heptatriynyl	circ, cc	CH ₁ C ₁ N	Methylcyanoacetylene
CH ₁ C ₄ H	Methyldiacetylene	cc	CH2CCHCN	Cyanoallene
CH ₁ CHCH ₂	Propylene	cc	NH ₂ CH ₂ CN	Aminoacetonitrile
C ₈ H	Octatetraynyl	circ, cc	HC ₇ N	Cyanotriacetylene
C ₈ H ⁻	Octatetraynyl ion	circ, cc	C ₂ H ₅ CN	Propionitrile
CH ₁ C ₆ H	Methyltriacetylene	cc	CH ₃ C ₅ N	Methylcyanodiacetylene
C ₆ H ₆	Benzene	circ	HC ₉ N	Cyanotetraacetylene
O-Containing			C ₃ H ₇ CN	N-propyl cyanide
CH ₁ OH	Methanol	cc, hc, gc, of	HC ₁₁ N	Cyanopentaacetylene
HC ₂ CHO	Propynal	hc, gc	S-Containing	
c-C3H2O	Cyclopropenone	gc	CH3SH	Methyl mercaptan
CH ₃ CHO	Acetaldehyde	cc, hc, gc	N,O-Containing	
C ₂ H ₃ OH	Vinyl alcohol	hc	NH ₂ CHO	Formamide
c-CH ₂ OCH ₂	Ethylene oxide	hc, gc	CH ₃ CONH ₂	Acetamide
HCOOCH ₃	Methyl formate	hc, gc, of		
CH ₁ COOH	Acetic acid	hc, gc		
HOCH ₂ CHO	Glycolaldehyde	he, ge		
C ₂ H ₃ CHO	Propenal	he, ge		
C ₂ H ₃ OH	Ethanol	hc, of		
CH ₁ OCH ₃	Methyl ether	he, ge		
CH ₃ COCH ₃	Acetone	hc		
HOCH ₂ CH ₂ OH	Ethylene glycol	hc, gc		
C ₂ H ₅ CHO	Propanal	he, ge		
HCOOC ₂ H ₅	Ethyl formate	hc		

First detections of "COMs" in space (1970):


```
CH<sub>3</sub>OH (Methanol)
```

> 150 molecules detected> 50 with 6 or more atoms

Where do we look?

Cold molecular clouds (without star formation)

Star-forming regions

- Viti's & Ceccarellis's talks Galactic Center (extreme conditions)
- Hot cores (massive stars)
- Hot corinos (sun-like stars)

Circumstellar disks and molecular outflows

Comets and meteorites ("in situ")

OPEN QUESTIONS:

- Do they share the same molecular abundances?
- Is the chemistry similar despite of the different environments?

Podio's & Codella's talks

Let's start by "the simplest complex"...

Glycolaldehyde (CH₂OHCHO)

Ethylene glycol (CH₂OH)₂

Complex organic molecules detected in the Murchinson meteorite "in situ" (Cooper+01, Nature)

Glycolaldehyde (GA) (CH₂OHCHO)

- It is the simplest *sugar*.
- It can react with propenal (3-carbon sugar) to produce ribose, the central constituent of RNA.

Ethylene glycol (EG) (CH₂OH)₂

- It is the simplest *sugar alcohol* (sugar + hydrogen atoms)
- It is the reduced alcohol of glycolaldehyde

Important role in interstellar prebiotic chemistry associated with sugar synthesis

Hot molecular cores: a perfect laboratory for astrochemistry

- Molecular environment surrounding massive stars (M > 8 M_{sun})
- The radiation from the star evaporates the complex molecules molecules from the grain mantles.
- Very rich chemistry.

OUR TARGET: G31.41+0.31 HOT CORE

Complex molecules already detected: $CH_3OH, CH_3CN, CH_3CHO, C_2H_5OH, C_2H_5CN, HCOOCH_3,$ $CH_3OCHO, CH_3COCH_3...$ (e.g. Fontani+07, Beltrán+09)

Good candidate for the detection of GA and EG

Detection of glycolaldehyde in G31

• First detection outside the Galactic Center by Beltrán et al. (2009)

Rivilla et al, in prep.

Detection of ethylene glycol in G31

Up to 30 "clean" (not blended) lines

Submillimeter Array (SMA)

Detection of ethylene glycol in G31

Spatial distribution of GA and EG

0.6

Jy/beam

Rest Freq (Gits)

GAME OF REACHONS

Joint study is the only way to really understand how COMs are formed in the space

Chemical (+ physical) models

Laboratory experiments

Observations: EG/GA ratio

Source	[EG/GA]
Hale-Bopp (comet)	>6
Lemmon (comet)	>3
Lovejov (comet)	>5
IRAS 16293-2422	1
NGC 1333 IRAS2A	5
NGC7129 FIRS2	2
SgrB2N	1.3
G31.41+0.31	3-5
Orion hot core	>10
W51e2	>16
G34.3+0.2	>6
G-0.02, G-0.11,G+0.693	1.2-1.6

EG/GA is rather different between sources

EG/GA > 1

Do the differences arise from the **origin** (the grains) or are a consequence of **subsequent** evolution?

Chemical models and laboratory: EG/GA ratio

Fedoseev+15

Oberg+09

Different compositions of the ices

CH ₃ OH:CO	EG/GA
Pure CH ₃ OH	>10
1:10	< 0.25

OTHER EXPLANATIONS: - Different destruction efficiency in the gas phase? - Different timescales produce different ratios (Garrod+08).

Observations & chemical models

Predictions from chemical models for the formation of glycolaldehyde (Woods+12,13):

ROUTE 1) $CH_3OH + HCO \longrightarrow CH_2OHCHO + H$ ROUTE 2) $H_2CO + HCO + H \longrightarrow CH_2OHCHO$ ROUTE 3) $2HCO + 2H \longrightarrow CH_2OHCHO$

DIAGNOSTIC DIAGRAM (from Woods+12,13 models)

 The 3 proposed routes predict different ratios of abundances

Determination of multiple abundances ratios involving all the molecules in a complete sample of regions

Víctor M. Rivilla

iALMA Fellow, Osservatorio Astrofisico di Arcetri September 15 2015, "Life in a cosmic context", Trieste, Italy

Maite Beltrán, Riccardo Cesaroni, Claudio Codella, Francesco Fontani, Paul Woods, Serena Viti, Paola Caselli, Anton Vasyunin, Hannah Calcutt

Image credit: ALMA (ESO/NAOJ/NRAO)/L. Calçada (ESO) & NASA/JPL-Caltech/WISE Team