AtmoSpheres in a test tube

Giuseppe Galletta Università di Padova

INAF OAPD Dept. of Physics and Astronomy Dept. of Biology **INAF IASP** INFN – LF Dept. of Biology ROM NAPLES ALBANIA C. De

E. Pace	Università di Firenze, INFN Lab. Nazionali Frascati
A. Ciaravella	INAF, Oss. Astron. di Palermo
G. Micela	INAF, Oss. Astron. di Palermo
G. Piccioni	INAF, Ist. di Astrof. e Planet. Spaziale
D. Billi	Dip. di Biologia, II Univ di Roma
M. Cestelli Guidi	INFN, Lab. Nazionali Frascati
L Cocola	LUXOR – Photonics and Nano Tech. Inst. PD
M. D'Alessandro	INAF, Oss. Astron. di Padova
S. Erculiani	CISAS "G. Colombo" PD
M. Fedel	LUXOR – Photonics and Nano Tech. Inst. PD
G. Galletta	Dip. di Fisica e Astronomia Univ. Padova
E. Giro	INAF, Oss. Astron. di Padova
N. LaRocca	Dip. di Biologia Università di Padova
T. Morosinotto	Dip. di Biologia Università di Padova
L. Poletto	LUXOR – Photonics and Nano Tech. Inst. PD
D. Schierano	Dip. di Fisica e Astronomia Univ. di Firenze
S. Stefani	INAF, Ist. di Astrof. e Planet. Spaziale

THE OWNER OF

OPC

INTERNATIONA

CHIANTI TOPICS

Osservatorio Polifunzionale del Chian San Donato in Poggio, Firenze (Ital

> Chairman: Emanuele Pace Riccardo Claudi

THENT

SOC: Giovanna Tinetti Ignas Snellen Ignasi Ribas Christoph Mordasini Diego Turrini Giuseppe Piccioni

LOC: Ruggero Stanga

15-17 September 201

Mauro Focardi Steven Shore Eugenio Simoncini Marco Sergio Erculia Vanni Moggi Cecchi 5th Workshop of the Italian Astrobiology Society Life in a Cosmic Context

15-17 September 2015, 'In este, Italy https://www.cc.mat.it/indico/event/106/

Scientific Organizers

Nadia Balucani Daniela Billi Alessandro Bressan John Brucato Julian Chela-Flores Marco Fulle Enzo Gallori Giuseppina Micela Raffaele Saladino Giovanni Vladilo (chair)

Local Organizers

Aura Bernardi Michele Maris Fabio Pagan Laura Silva Societa Societa Leileil - elooloido

Osservatorio Astro Astronomical Obse

IS

nomico di Trieste

atory of Trieste

Invited Speakers

Giuseppe Galletta

Ernesto di Mauro

Antonio Lazcano

Rocco Mancinelli

Mauro Mandrioli

Isabella Pagano

Leonardo Testi Serena Viti

Valfredo Zolesi

Sandra Pizzarello

Alessandro Sozzetti

Giuseppe Murante

http://opc.msn.unifi.it/index.php/chianti-topics/EXO-PLANETARY info@osservatoriodelchianti.it

Ref: Tinetti et al., 2012;

A planet's spectrum is the product of a complex interplay of environmental components and processes.

The habitable zone (Kasting et al. 1993)

The habitable zone (Kasting et al. 1993)

HZ for the other stars

The HZ limits around the other stars of different spectral type are given by:

Characterizing Extrasolar Planets. Deduce from observations:

- Environmental Characteristics
 - host star, placement in solar system, moons, other planets
- Photometric properties and variability
- Remote-sensing spectroscopic analysis
 - the presence of an atmosphere and its chemical composition
 - albedo, thermal emissivity, temperature
 - atmospheric structure (T(z), P(z))
 - trace gas mixing ratios
 - temporal variations, phase and
 - seasonal variations

Astronomical Biosignatures

- photometric, spectral or temporal features indicative of life.

Integrate Ligth from earth, reflected by the dark side of the moon: Chlorophill, O_2 , O_3 , H_2O .

Direct Imaging of Exo-Planets

HR 87991.5 Msun,130 light years from Earth.

- Rapid identification of the planet
- Determination of the orbit, no M sin(i) ambiguity
- Characterization of the planet
 - albedo, temperature, chemical composition
 - => test of atmospheric models, of evolutionary models
- Access to a new (separation, age) domain
 - Planets around young stars
 - Larger separations (P > few years)
- Access to all types of stars
 - Early type stars
 - Active stars

But ... difficult !

Transmission and occultation spectroscopy

Crossfield 2015

Eclipse:

Removing "star" from "star plus planet" flux reveals the planet's thermal emission or albedo:

Transmission:

Planet's apparent size at different wavelengths reveals atmospheric opacity and composition.

Direct Imaging:

Spatially resolving planet from star allows measurement of thermal emission or albedo.

Phase Curves:

Total system light throughout an orbit constrains atmospheric circulation and/or composition.

Atmosphere In A Test Tube

To Simulate Planetary Atmosphere in laboratory in order to:

- Produce Data base of Spectra at different P and T conditions
- Study the possible modification to rocky planets atmospheres due to biota
 Study the interaction between radiation and Atmospliere

Experimental setup @ INAF-IASF Giant planets atmospheres

FT-IR Specification:

Detectors:

DTGS	350-10000 cm ⁻¹
MCT	850-12000 cm ⁻¹
InGaAs	9000-12800 cm ⁻¹
Si	9000-25000 cm ⁻¹

Sources:

MIR	100-8000 cm ⁻¹
NIR/VIS	3000-25000 cm ⁻¹

Beam splitter:

KBr	380-10000 cm ⁻¹
CaF ₂	4000-50000 cm ⁻¹
Resolutio	on (10-0.07) cm ⁻¹

Giant planets atmospheres Multi pass gas cell @ intermediate pressure and high temperature

Giant planets atmospheres Cavity Ring Down (CRD) Cell

Quartz mirrors with a HR coating (99,97 %) have been glued on a quartz tube with several holes.

A CRD time of about 17 ms corresponds with an optical path of about 5 km.

INFN DaFne-Ligh synchrotron facility

A synchrotron facility operating with syncrotron and standard sources in the Infrared and UV-VIS energy range is open to external users.

- Extended IR range (from Far-IR to NIR-VIS)
- Chemical microimaging of materials
- Real time study of photoageing processes
- Exo-biosphere's evolution and biosignature characterization
- High temperature (1200°C) / high pressure (20GPa) setup

INFN

SOURCE branchline in a 1000-class cleanroom

UV-VIS monochromatic radiation source (180-650 nm)

VUV monochromatic radiation source (120-250 nm)

UV-VIS radiation source (200-650 nm)

- Large optical systems (up to 4 m) surface characterization
- UV photoageing of optical components and materials
- Detector calibration
- Photobiology and exobiology experiments

LIFE @ INAF OAPA (Light Irradiation Facility for Exochemistry)

UV Source (HI Lya)

INAF OAPD- Padua Dept. Physics & Astronomy: Rocky Planets atmosphere modification caused by biota

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Wavelength (microns

MINI-LISA ambient simulator

AIMS: Study the metabolism, vitality and gaseous production of photosynthetic bacteria when forced to live in a different environment, mimicing an earth-like planet orbiting around the HZ of an M type star.

Timeline of the experiment

Step Zero: -conception of an M starlight simulator -Choice of bacteria -Incubator build-up

First step: Irradiation of the samples with solar light in terrestrial conditions - Analysis of gaseous abundances in the cells

Third step: -Irradiation of the samples with M star radiation at terrestrial pressure,temperature and extrasolar planet gaseous mixture, -Analysis of gaseous abundances in the cells.

Second step: -Irradiation of the samples with M star radiation, -Analysis of gaseous abundances in the cells

Ancillary science: Plants on M star planets

