5th Workshop of the Italian Astrobiology Society
16 September 2015, Trieste (Italy)

Nucleic Acid Components adsorbed on mineral surfaces: A test bed for searching signs of life on Mars

Teresa Fornaroa,b,*, John Brucatob, Malgorzata Biczyskoa,c, Vincenzo Baronea

a Scuola Normale Superiore, Pisa, Italy
b INAF–Astrophysical Observatory of Arcetri, Firenze, Italy
c CNR–ICCOM, Pisa, Italy and Shanghai University, Shanghai, China

*PhD Student in Chemistry, Email: teresa.fornaro@sns.it
INTRODUCTION

Mars Exploration: Laboratory Simulations
INTRODUCTION

Spectroscopic studies of the effects of UV radiation on biomolecules in heterogeneous environments: Relevance of the Research

- Prebiotic chemistry
 Role of minerals in the transformation/preservation of biomolecules

- Life detection
 Identification of potential biomarkers

- In situ and remote sensing spectroscopy
 Detection of organic compounds in space
INTRODUCTION

Nucleobases: Relevance of the Research

Coding components of nucleic acids

• Biomarkers of extant life
• Study of the origin of life
• Preservation of biological matter under space conditions
Nucleobases might have played a critical role at the dawn of life due to their photoprotective properties.

Magnesium oxide (MgO)

Forsterite (Mg$_2$SiO$_4$)
Photostability of nucleobases adsorbed on Magnesium Oxide and Forsterite

FTIR spectroscopic *in-situ* analysis during UV irradiation in vacuum
Biconical diffuse reflectance spectra acquisition technique (DRIFTS)
UV source Mercury-Xenon lamp 500 W, 185-2000 nm
UV degradation kinetics

\[\frac{N(t)}{N_0} = B e^{-\beta t} + c \]

- \(\frac{N(t)}{N_0} \) fraction of unaltered molecules
- \(\beta \) degradation rate
- \(B \) fraction of interacting molecules
- \(c \) fraction of non-interacting molecules

- \(t_{1/2} = \ln(2) / \beta \)
- \(\beta = \sigma \Phi_{\text{tot}} / A_0 \)
- \(t_{1/2} \) half-lifetime
- \(\sigma \) UV destruction cross section
- \(\Phi_{\text{tot}} \) total focused incident UV flux
- \(A_0 \) sample irradiated area

- **Cytosine** and **hypoxanthine** have a greater photostability
- For **adenine** and especially **uracil** degradation was observed both pure and adsorbed onto MgO and forsterite
- **Minerals** make degradation faster and more probable

INTERPRETATION OF EXPERIMENTAL DATA

Photoproducts marker bands

Proposed Photoprodusts

[2+2] Photocycloaddition

The main photoproduct: Cis-syn cyclobutane dimer (CBD)

Varghese, A.J. Biochemistry 1971, 10(23), 4283-4290.
Catalytic Effect of Forsterite

[2+2] Photocycloaddition

- Concentrates molecules on a local scale through adsorption
- Induces the correct orientation of reactive groups through specific molecule-mineral interactions
Open Questions

- What are the causes of the different behavior of nucleobases in the presence of UV radiation?
- What is the photochemistry of the degradation process at a mechanistic level?
Open Questions

- Which are the causes of the **different behavior of nucleobases** in the presence of UV radiation?

- Which is the **photochemistry of the degradation process at a mechanistic level**?
Uracil adsorbed on MgO
IR bands are NOT observed

Uracil adsorbed on Forsterite
Detectable IR bands
INTERPRETATION OF IR SPECTRA

IR-spectroscopy studies of nucleobase-mineral complexes
Proposed geometrical arrangements of nucleobases on MgO and Forsterite

Adenine on MgO
Interaction with the $N_3C_4C_5C_6$ part of the molecule in a distorted nearly planar arrangement

Adenine on forsterite
Interaction with the NH$_2$ group in a tilted arrangement

Cytosine on MgO and forsterite
Face-to-face configuration

Uracil on MgO
Face-to-face configuration

Uracil on forsterite
Interaction with the C$_2$=O and N$_3$H groups in a tilted arrangement

Hypoxanthine on MgO and forsterite
Face-to-face configuration

Problems

Scarcity of bands in the IR spectra
Problems

High complexity of experimental IR spectra
Goal:
Development of a computational procedure based on quantum mechanical anharmonic computations of vibrational frequencies and IR intensities

Fornaro, T.; Carnimeo, I. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 2014, DOI: 10.1016/B978-0-12-409547-2.11025-X.
Dispersion-corrected Density Functional Theory methods

- **B3LYP-D3/SNSD**\(^a\) (Semi-empirical dispersion correction)

Simulation of anharmonic IR spectra

- Generalized second-order vibrational perturbation (GVPT2)\(^b,c,d\) model approach

 Fully anharmonic calculation of frequencies and intensities

\[
E_v = \chi_0 + \sum_i \omega_i \left(\nu_i + \frac{1}{2} \right) + \sum_i \sum_{j<i} \chi_{ij} \left(\nu_i + \frac{1}{2} \right) \left(\nu_j + \frac{1}{2} \right)
\]

Suite of programs: **GAUSSIAN**\(^e\)

\(\text{e}\) Frisch, M. J. \textit{et al.}, Gaussian 09 Revision D.01, 2013, Gaussian Inc. Wallingford CT 2009.
Computational Spectroscopy: Monomers

Fundamentals
- $\nu C_2=O$
- $\nu C_4=O$
- $\nu C_5=C_6$

Non-fundamentals
- δN_1H
- δN_3H
- γN_1H

Experimental IR spectrum of Uracil in Argon Matrix
- Stick
- Convolved

Theoretical IR spectrum of Uracil Monomer
- Stick
- Convolved

- B3LYP-D3 Anharmonic IR spectrum of Uracil Monomer
- $\nu C_2=O$
- $\nu C_4=O$
- $\nu \text{ring, } \delta N_1H, \delta N_3H$
- δN_3H
- γN_1H

Computational Studies
COMPUTATIONAL STUDIES

Effects of intermolecular interactions: Dimers

Experimental data:

<table>
<thead>
<tr>
<th>Assign</th>
<th>(\nu) Uracil in Argon</th>
<th>(\Delta \nu) Solid Uracil</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu N1H)</td>
<td>3482</td>
<td>-376</td>
</tr>
<tr>
<td>(\nu N3H)</td>
<td>3433</td>
<td>-433</td>
</tr>
<tr>
<td>(\nu C5H)</td>
<td>3130</td>
<td>-42</td>
</tr>
<tr>
<td>(\nu C2=O)</td>
<td>1762</td>
<td>-1</td>
</tr>
<tr>
<td>(\nu C4=O)</td>
<td>1733</td>
<td>-81</td>
</tr>
<tr>
<td>(\nu C5C6)</td>
<td>1644</td>
<td>-28</td>
</tr>
</tbody>
</table>

RD – VPT2 scheme: 15 selected modes

<table>
<thead>
<tr>
<th>Assign</th>
<th>(\nu)</th>
<th>(\Delta \nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(u)</td>
<td>(u2a)</td>
</tr>
<tr>
<td>(\nu N1H)</td>
<td>3473</td>
<td>3</td>
</tr>
<tr>
<td>(\nu N3H)</td>
<td>3430</td>
<td>-450</td>
</tr>
<tr>
<td>(\nu C5H)</td>
<td>3109</td>
<td>20</td>
</tr>
<tr>
<td>(\nu C2=O)</td>
<td>1770</td>
<td>18</td>
</tr>
<tr>
<td>(\nu C4=O)</td>
<td>1749</td>
<td>-62</td>
</tr>
<tr>
<td>(\nu C5C6)</td>
<td>1638</td>
<td>-9</td>
</tr>
</tbody>
</table>

UV IRRADIATION EXPERIMENTS

Conclusions

- Uracil is the most photoreactive, probably forming cyclobutane dimers

- MgO and Forsterite have no protective effect, instead they may be catalytic potentially triggering chemical processes towards complex species

Conclusions

IR spectroscopy analysis:
Important shifts of the vibrational frequencies and changes of the IR intensities of specific functional groups due to intermolecular interactions are observed;
Assignments based on gas-phase data could be misleading;
Computational spectroscopy approaches pave a way for the analysis of experimental data of nucleobases complexes.

Acknowledgements

- **INAF- Astrophysical Observatory of Arcetri (Florence):**
 Dr. John Robert Brucato.

- **Laboratori Nazionali di Frascati (LNF) – INFN:**
 Dafne Luce Laboratory.

- **Italian Space Agency (ASI):**
 Grant I/060/10/0.

- **Scuola Normale Superiore di Pisa:**
 Prof. Vincenzo Barone, Dr. Malgorzata Biczysko, Dr. Susanna Monti, Dr. Ivan Carnimeo,
 DREAMS team, laboratory of Theoretical and Computational Chemistry.