5th Workshop of the Italian Astrobiology Society «LIFE IN A COSMIC CONTEXT»

K⁺ vs. Na⁺ Driving Force of Prebiotic Peptide Emergence

Michael Dubina

Corresponding Member of the Russian Academy of Sciences M.D. Ph.D. D.Sc. Professor

St. Petersburg Academic University Russian Academy of Sciences

Inorganics - Organic World

Discharge experiment 1953

Stanley L. Miller 1930 - 2007

Alexander I. Oparin 1894 - 1980

Harold C. Urey 1893 - 1981

Prebiotic Polymerization Problem

Andre Brack b. 1938

Sidney W. Fox 1912 - 1998

Leslie E. Orgel 1927 - 2007

Salt-Induced Peptide Formation Copper-Catalyzed

Analytical Sciences (1989)

Sodium vs. Potassium Contradictions

A commonly believed thoughts:

First protocell could have emerged in salty seawater

Seawater:

 $K^+ \sim 0.01 \text{ mol/L}$ $Na^+ \sim 0.46 \text{ mol/L}$

Cell cytoplasm (all "modern" living cells): $K^+ \sim 0.10 \text{ mol/L} \quad Na^+ \sim 0.01 \text{ mol/L}$

Natochin's hypothesis:

First protocell could not emerge in NaCl solutions, but in KCl

Paleontological Journal (2005)

Yuri Natochin b. 1932

Sodium vs. Potassium Contradictions

Physical-chemical properties

	Atomic weight	Ionization Energy, eV	lonic radius, Å	Diffusion coefficient, ×10 ⁻⁵ cm²/sec
Na⁺	22.9897	5.1391	0.95	1.334
K+	39.0983	4.3407	1.33	1.957

Biological properties

	DNA amplification	Ribosomal peptide synthesis	Active transport across cell membrane
Na+	inhibition	decreasing	outside
K+	facilitation	increasing	inside

Na⁺- or K⁺-mediated (0.5M, 1M, 2M) CDI-induced L-Glu oligopeptide formation

K⁺ and Na⁺ in the CDI-induced L-Glu oligopeptide formation: *chromatograms*

Dubina M. et al. OLEB (2013)

K⁺ predominates over Na⁺ in the CDI-induced L-Glu oligopeptide formation: *HPLC-MS/MS*

	L-Glu oligs + 1.0 M NaCl			L-Glu oligos + 1.0 M KCl		
N _{res}	MS [M+H]+([M+Na]+)	+) HPLC		MS [M +H] ⁺ ([M+K] ⁺)	HPLC	
	Found, Da	Peak area	Relative area, %	Found, Da	Peak area	Relative area, %
2	277.101 (299.085)	963	100.0	277.103 (315.089)	534	100.0
3	406.146 (428.127)	1060	110.1	406.146 (444.101)	709	132.8
4	535.187 (557.172)	770	80.0	535.187 (573.145)	833	156.0
5	664.230 (686.212)	408	42.4	664.231 (702.187)	651	121.9
6	793.272 (815.252)	174	18.1	793.272 (831.229)	411	77.0
7	922.315 (944.285)	61	6.3	922.315 (960.273)	223	41.8
8	1051.352	18	1.9	1051.352 (1089.311)	99	18.5
9	—	4	0.4	1180.394	45	8.4
10	—	_	_	—	17	3.2
11		_	_	_	6	1.1

Terterov I. et al. Rapid Communications in Mass Spectrometry (2014)

Physical-chemical model of K⁺ vs. Na⁺ mediated oligopeptide formation

Quasi-chemical nucleation model

Dubrovskii V. et al. Journal of Chemical Physics (2013)

Metal ion diffusion, hydration and coordination to amino acids

Conclusion

K⁺ predominates over Na⁺ in the prebiotic formation of peptides

The following conditions could have enforced the first step in the chemical evolution of self-assembling organic molecules:

- (1) aqueous media contained the building blocks of organic matter and positive inorganic ions, which are *geochemically abundant*
- (2) *binding reversibility* to amino acids and the moderate hydration energy of the ions in liquid phase at 0-100 °C
- (3) high diffusion and specific ion coordination to oxygen atoms of amino acids in zwitterion form, which enhances the iondependent yields of oligomerization

K⁺ complies with all the above-listed requirements, which is unique in contrast to other mono- and divalent metallic ions

Thanks to the project team!

Sergey Vyazmin Chemistry

Vitali Boitsov Chemistry

Ivan Terterov Mathematics

Yuri Natochin Physiology

Yuri Trushin Physics

Maxim Lubov Physics

Vladimir Dubrovskii

Physics

Igor Eliseev Physics

Thoughts and on-going research

The emergence of the ancient metabolic and information systems of the protocells could have occurred in potassium-rich habitats.

Thus it seems evident that all the living cells would have evolved to preserve the initial ion gradients by using energy-dependent membrane pumps in sodium aqueous media (seawater).

If the same predominance of K⁺ over Na⁺ in CDI-induced polymerization of all amino acids?

Is SIPF without Cu²⁺ (with K⁺ only) possible?

What were terrestrial or extra-terrestrial sources of potassium-rich water reservoirs on prebiotic Earth?