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Conditions for the existence of life (1):
from prebiotic chemistry to inhabited environments

The physico-chemical
conditions required for:
prebiotic chemistry,
abiogenesis and habitability
are generally different

The chemical pathway
leading to abiogenesis
appears to be quite narrow

The conditions for the
emergence of life represent a
sort of “bottleneck™ for the
effective presence of life in
an astronomical body
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Cockell (2016)

Conditions within which
all known life can be active



Abiotic evolution of planetary conditions

A planet that has the conditions for
habitability, but not those for the
emergence of life, will evolve under the
effects of abiotic feedbacks

Examples
Astronomical forcing:
stellar luminosity, orbital parameters,
Climate feedbacks:
ice-albedo, temperature-water vapour,
inorganic CQO, cycle, etc...

If positive abiotic feedbacks are
dominant, the planet may loose its
habitability in the course of its evolution
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Chopra and Lineweaver (2016)



Evolution of planetary conditions in presence of life
Two possible scenarios:
1) Life is unable to evolve rapidly enough to control runaway positive feedbacks
2) The biosphere evolves fast enough to keep the planet habitable in the long term
(“Gaian regulation”)

No Emergence Bottleneck

+2 Gyr +2 Gyr

now now

~4Gya ~4Gya

uninhabitable conditions uninhabitable conditions

Chopra and Lineweaver (2016)

Gaian Bottleneck: Early Extinction Gaian Regulation: Late Extinction

The long-term persistence of habitability conditions on Earth might be the result
of Gaian regulation (at least in part)



Biosignatures in exoplanets

Gaseous Surface Temporal

Ex: Oxygenic Photosynthesis ﬁ % e.g., “Keeling curve”
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FIG. 1. Summary of gaseous, surface, and temporal biosignatures. Left panel: gaseous biosignatures are direct or indirect
products of biological processes. One example is molecular O, generated as a by-product of photosynthesis that is then
photochemically processed into O3 in the stratosphere. Middle panel: surface biosignatures are the spectral signatures
imparted by reflected light that interacts directly with living material. One example is the well-known VRE produced by
plants and the associated NDVI used for mapping surface vegetation on Earth (Tucker, 1979). Right panel: time-dependent
changes in observable quantities, including gas concentrations or surface albedo features, may represent a temporal bio-
signature if they can be linked to the response of a biosphere to a seasonal or diurnal change. An example is the seasonal
oscillation of CO, as a response to the seasonal growth and decay of vegetation (e.g., Keeling et al., 1976). This figure is
reproduced with permission from Schwieterman (2016). Subimage credits: NASA and the Encyclopedia of Life (EOL).
NDVI, Normalized Difference Vegetation Index; O,, oxygen; O3, ozone; VRE, vegetation red edge.
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Atmospheric biosignatures
Why do we expect them to be present

Life metabolizes and dissipates metabolic by-products

If life with active metabolism is spread on the planetary surface,
its by-products may accumulate in the planetary atmosphere
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Atmospheric biosignatures
What should we do to identify them

(1) Enhance the observational techniques in order to be able to obtain spectra of
the thin atmospheres of rocky, habitable planets

(2) Build synthetic spectra of the exoplanetary atmosphere

(3) Identify molecular species that, from the comparison of chemical equilibrium
models, can be used as reliable biosignatures




spectral flux [W m-3]

Steps for identifying atmospheric biosignatures:

Building synthetic spectra of the planetary atmosphere
Requires a physical description of the vertical stratification

Synthetic emission and reflection spectrum
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The generation of synthetic spectra requires updated databases of
molecular transitions for potential tracers of biological activity
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Steps for identifying atmospheric biosignatures:
Searching for evidence of chemical disequilibrium

Chemical equilibrium calculations are performed using
a network of redox chemical reactions, where
an electron 1s added (reduction) or removed (oxidation)
from an atom or molecule

Redox chemistry is used by all life on Earth and is more flexible
than non-redox chemistry

Example:
Earth’s atmosphere has oxygen (a highly oxidized species) and methane (a very
reduced species) several orders of magnitude out of thermochemical redox
equilibrium



Biosignatures in the Earth’s atmosphere

In practice it could be difficult to detect both molecular features of a redox
disequilibrium pair. Present-day Earth, for example, has a relatively prominent
O, absorption at 0.76um, whereas CH, absorptions are extremely weak

Intensity (photons um-1 m-2 hr-1)
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Mid IR thermal emission spectra, with
the black body emission of a planet of
the same radius (dashed lines)

Spectral resolution: R ~ 100
Fluxes correspond to a solar system analogue at 10 pc

Reflection spectra in the visible/near
IR of Earth, Venus and Mars




Evolution of atmospheric biosignatures on Earth

In the course of Earth evolution, different types of gases of biological origin

could have been observable, not necessarily as redox pairs
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Predicted evolution of atmospheric signatures of an Earth-like planet at 6 different
geologic epochs, in absence of clouds. The planet evolves from CO,-rich, to CO,/CHy-
rich, to a present-day O,-rich atmosphere. From Kaltenegger et al. (2007)



Atmospheric oxygen as a biosignature

The history of Earth’ s atmospheric oxygen shows that oxygen is one of the
most promising biomarkers: in absence of a biosphere, O, tends to oxidate
rocks, decreasing its atmospheric concentration

Caveat: it is not possible to exclude a non-biological origin of oxygen in
other planets

The study of biosignatures requires a full calculation of equilibrium
abundances of a variety of molecular species
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TABLE 4. POTENTIAL BIOSIGNATURE GASES AND ASSOCIATED INFORMATION

Visible-NIR ~ Thermal IR
UV-Visible-NIR band spectral
band center, interval, band center,
Biosignature um and (em™) em™ um Biogenic source Abiogenic false positive
0, 1.58 (6329) 63006350 — Photosynthesis: splitting Cases of water and CO,
1.27 (7874) 7700-8050 of water photodissociation and
1.06 (9433) 9350-9400 preferential escape of
0.76 (13158) 12850-13200 hydrogen, with lack of
0.69 (14493) 14300-14600 O, sinks
0.63 (15873) 14750-15900

CH,

N,O

NH;

0.175-0.19
[Schumann—Runge]

4.74 (2110)

3.3 (3030)

0.45-0.85 [Chappuis]
0.30-0.36 [Huggins]
0.2-0.3 [Hartley]

3.3 (3030)

2.20 (4420)

1.66 (6005)
<0.145 continuum

4.5 (2224)
4.06 (2463)
2.87 (3484)
0.15-0.20
0.1809, 0.1455,
0.1291

4.3

3.0 (3337)

2.9 (3444)

2.25,2,1.5,0.93,
0.65, 0.55, 0.195,
0.155

2000-2300 >15 (rotation), Photosynthesis:

3000-3100
1060022600

2500-3200
40004600
5850-6100

2100-2300
2100-2800
3300-3500

2800-3150

14.3, 9.6,

89,7.1,5.8

6.5, 7.7

7.78, 8.5,

16.98

6.1, 10.5

photochemically
derived from O,

Methanogenesis:

reduction of CO, with
H,, often mediated by
degradation of organic

matter

Denitrification:

reduction of nitrate
with organic matter

Ammonification:

Volatilization of dead
or waste organic
matter

Catling et al. 2018

As above

Geothermal or primordial

methane

Chemodenitrification but

not truly abiotic on
Earth?®; also strong
coronal mass injection
affecting an N,—CO,
atmosphere®

Nonbiogenic, primordial

ammonia



One of the aims of astrobiology is exploring

the (potential) distribution of life in the universe

This particular aspect of astrobiology has lead to the definition of

The Galactic Habitable Zone (GHZ)



Galactic habitable zone vs circumstellar habitable zone

Important differences

1) The habitability criteria of the GHZ are based on statistical distributions of
Galactic properties and yield probability distributions

The results are purely statistical

2)_ Some habitability criteria used to define the GHZ refer to macroscopic life

Comparable to animal or plant life on Earth

The time scales of life evolution enter in the calculation of GHZ



General concept of the Galactic habitable zone

Mapping astrophysical quantities
related to Galactic evolution into
probabilities of astrobiological interest

In the original formulation
Gonzalez et al. 2001, Icarus,152,185

Metallicity & probability of planet
formation
Z(xi’t) > nPF(xi)t)

Supernova rates & probability of life
destruction
Rgn(x;,t) = T1p(X;,1)

Lineweaver et al. 2004, Science 303, 59
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Fig. 3. The GHZ in the disk of the Milky Way based on the star formation rate, metallicity (blue),
sufficient time for evolution (gray), and freedom from life-extinguishing supernova explosions
(red). The white contours encompass 68% (inner) and 95% (outer) of the origins of stars with the
highest potential to be harboring complex life today. The green line on the right is the age
distribution of complex life and is obtained by integrating P, (r, t) overr.



Tools for GHZ calculations

e Models of Galactic chemical evolution

— Radial distribution of metallicities and supernova rates at different
epochs of galactic evolution

— In the original formulation, semi-analytical models have been used
— More realistic models are also employed:

Spitoni, Matteucci & Sozzetti, 2014, MNRAS 440, 2588

Carigi et al. 2013, Rev. Mex. Astron. Astrof., 49, 253

* Galaxy simulations

— Generation of space-time evolutionary maps of Galactic habitability by
means of N-body simulations of galaxies

— Example:
Forgan et al., 20135, arXiv:1511.01786

Both tools start to be applied also to nearby galaxies
— M31,M33



Open 1ssues in GHZ calculations

Probability of existence of terrestrial-
type planets as a function of stellar

metallicity
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Open 1ssues in the definition of the GHZ

Still not clear the relationship between metallicity and probability of
formation of terrestrial-type planets

Exoplanet statistics will clarify this point in the future, when more data
will be available for terrestrial planets at very low metallicities

Ambiguous role of supernovae explosions in the context of life evolution
Only extremely close supernovae can sterilize a planet

Supernovae may trigger life evolution, leading to the formation of new
species

The classic criteria that define the GHZ need to be refined and it is
desirable to find new criteria



On the role of SN explosions

* Resetting the evolution to intelligent life at each SN destructive event

Even if SNe do not fully sterilize the planet, one can assumed that the evolution is
resetted (e.g., restarting from unicellular life) at each critical SN event

Then the probability of forming intelligent life is calculated, using Monte Carlo

methods, only during the time intervals devoid of SN destructive events

birth formation of ozone SN, present/death
GAP, GAP, GAP4
l ’l j;
I |
1.55 Gyr for time available
animal life for emergence GAP, < 1.55

FIG. 2. [Illustrative planet timeline showing the major events from the birth (at left) to the present (or death) time (at right)
and showing how “‘gap times’” are calculated. In this example, there are two SNe, labeled SN, and SN,. A gap time begins
after the first formation of the ozone layer or after a SN event. A gap time is ended by a SN, the death of the planet, or the
present day, as we do not extrapolate beyond the age of the Universe. Any gap times exceeding 1.55 Gyr (the time assumed
to be needed for the emergence of animal life) give rise to an opportunity for intelligent life to emerge. The shaded regions
represent these *“‘opportunity times,”” T, which are equal to the gap time less 1.55 Gyr.

of intelligent life

Morrison & Gowanlock (2015)




SETI

Search for extraterrestrial intelligence with new astronomical facilities:
SKA (Square Kilometer Array)

Transmitter Type Luminosity (EIRP) Number on Earth
(ergs/sec)
EIRP:
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