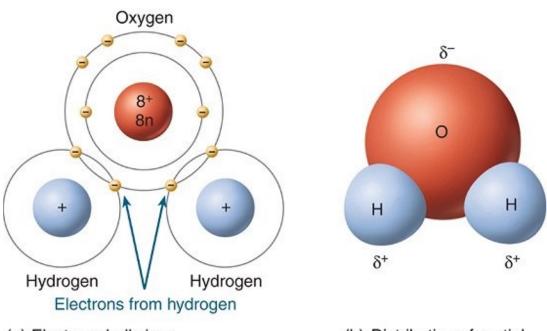
Astrobiology Lecture 3


Water & carbon in terrestrial life

University of Trieste, 2023 Giovanni Vladilo (INAF-OATs)

The water molecule

Builds up the molecular medium of terrestrial life

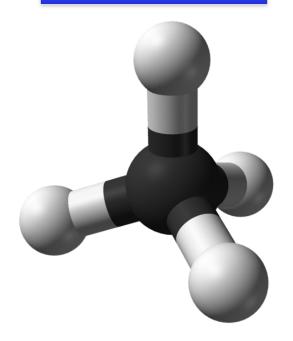
The water molecule is polar

(a) Electron shells in a water molecule

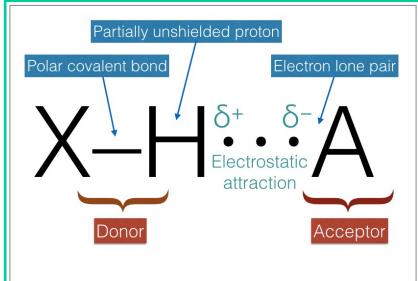
(b) Distribution of partial charges in a water molecule

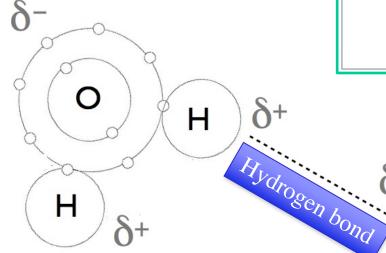
Polar and non-polar molecules

• The polar character depends on the geometrical distribution of electric charges of the molecule


Water is polar because of the <u>asymmetric</u> distribution of charges

Methane is non polar (no electric dipole)


Methane:


a non-polar molecule

- Polar molecules
 - can be solved in water
 - are <u>hydrophilic</u>
- Non-polar molecules
 - cannot be solved in water
 - are <u>hydrophobic</u>

Water molecules are connected by a network of hydrogen bonds

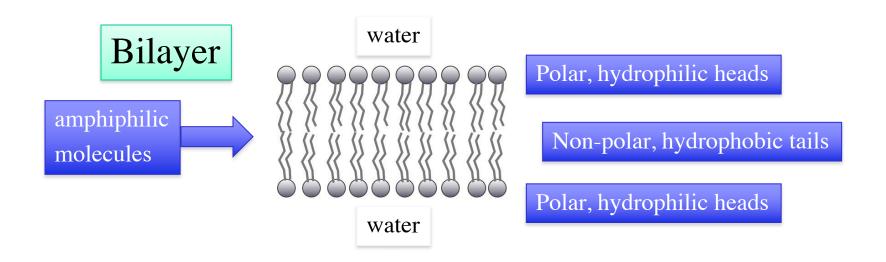
Hydrogen bonds are responsible for most of the properties of water that are relevant to life

H

Properties of water relevant to life (1)

• The water molecule has a high <u>electric dipole</u>

– Water is a good solvent


Thanks to this property, life molecular constituents can be dissolved and have the <u>mobility</u> required for metabolic processes to take place

Biomolecules also take advantage of the external <u>structural support</u> provided by water molecules

 Thanks to the polarity, amphiphilic molecules in water can spontaneously form structures of biological interest (bilayers, micelles)

Amphiphilic molecules: two-ended molecules with one end hydrophilic and one end hydrophobic

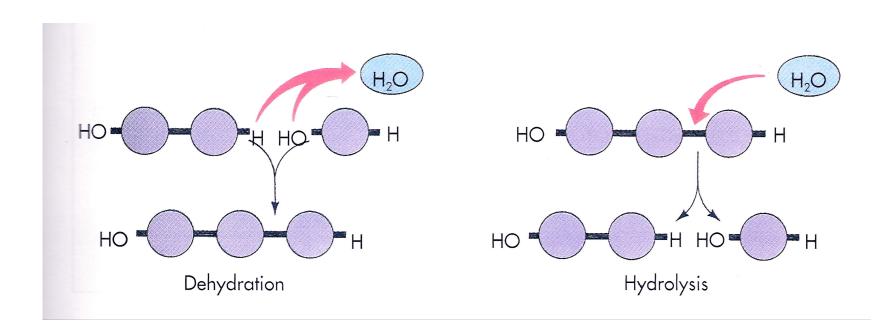
Polar molecules allow <u>spontaneous formation</u> of <u>molecular structures</u> of biological interest

The spontaneous formation is driven by entropy variations

Although the clustering results in a decrease of entropy of the dissolved molecules, fewer water molecules are required to encase the clustered structures and a larger number of water molecules are free to move (net entropy increase)

Atkins & De Paula, Physical Chemistry for Life Sciences, 2011, p. 86

Properties of water relevant to life (2)

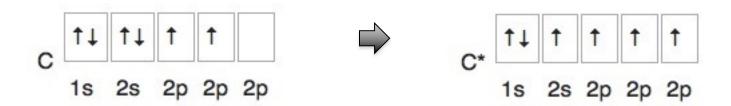

- Water spontaneously form ions
 - Spontaneous breaking of covalent bonds in a small fraction of water molecules yields H⁺ and OH⁻ ions

Note: the concentration of H⁺ ions in water is used to define the pH scale

The free ions, and in particular H⁺, can be used to transport electric charges

H⁺ and OH⁻ take part in metabolic reactions

- Water takes part of fundamental metabolic processes, both as a reactant and as a product of reaction
- Water formation and dissociation plays a direct role in metabolic processes

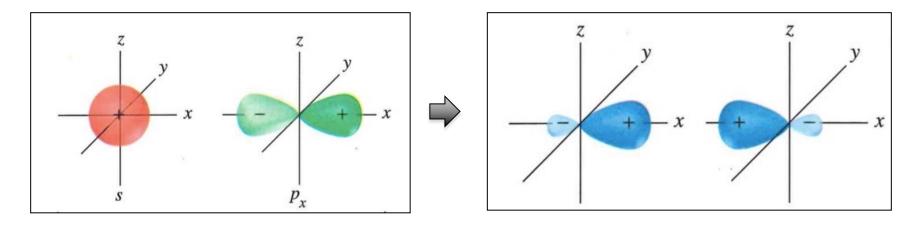

Carbon in terrestrial life

Electronic orbitals
Carbon-based biological macro-molecules

Carbon

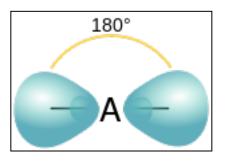
In terrestrial life carbon is the building block of biological molecules

- With respect to other cosmically abundant atoms, carbon offers several advantages in terms of structural and metabolic properties
- Electronic configuration
 - Carbon's ground state configuration is 1s² 2s² 2p²

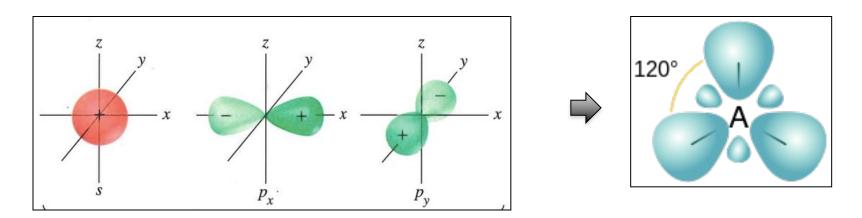


- The excitation of one electron of the 2s orbital easily provides a configuration with 4 orbitals with a single electron
- The 4 oriented covalent bonds allow the formation of a great variety of 3D molecular structures:

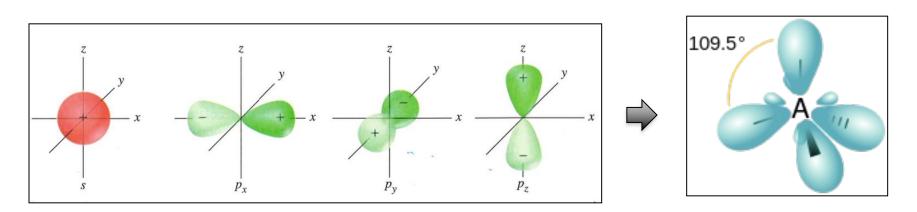
linear, planar, tetrahedical


Hybridization of carbon valence orbitals

sp orbitals: two atomic orbitals are mixed to form two hybrid orbitals


The two sp hybrid orbitals arrange themselves in three dimensional space to get as far apart as possible with a bond angle of 180°.

The geometry which achieves is linear.



Hybridization of carbon valence orbitals

sp² orbitals: three atomic orbitals are mixed to form three hybrid orbitals

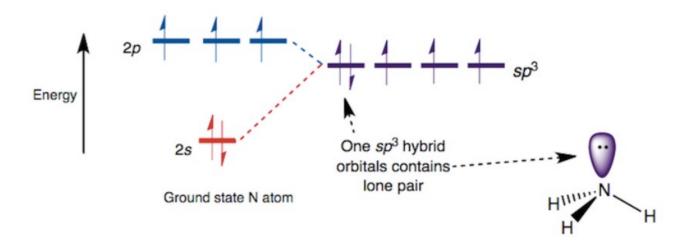
sp³ orbitals: four atomic orbitals are mixed to form four hybrid orbitals

Carbon

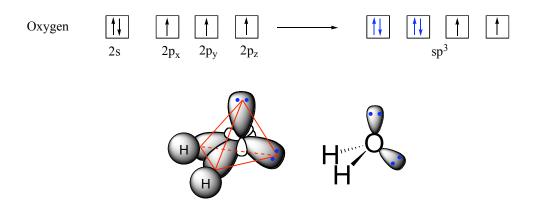
- Structural properties
 - In summary, carbon has 4 oriented covalent bonds that allow the formation of a great variety of 3D molecular structures
 - The valence orbitals 2s and 2p can hybridize forming:

two sp hydrid orbitals → linear structures

three sp^2 hybrid orbitals \rightarrow planar structures


four sp³ hybrid orbitals

→ tetrahedrical structures


Carbon versus nitrogen and oxygen

The flexibility of carbon to form 3D structures is not found in other atoms

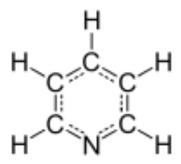
Nitrogen has 3 covalent bonds which tend to form planar structures

Oxygen has 2 covalent bonds which tend to form linear structures

Organic ring structures

Carbon can form a variety of ring structures Carbon is the only atom with the capability of forming aromatic rings

Cyclohexane (saturated molecule)


Aromatic ring of Benzene (unsaturated molecule)

Hetero-organic molecules

- Carbon is capable of forming complex molecules not only with itself, but also with H, O and N

This is because the covalent bonds C-C, C-H, C-O, and C-N have similar dissociation energies

For instance, N can replace C in ring structures

The large flexibility of carbon in terms of geometrical structure, coupled with the possibility of substitutions of other abundant elements, leads to a infinite number of possible molecular structures (organic chemistry)

The huge spectrum of molecular structures offered by organic chemistry is particularly important in biochemistry

Advantages of carbon

Metabolic properties

Carbon can easily be transformed from the completely oxidized form,
 CO₂, to the completely reduced form, CH₄

This is an advantage for the capability of activating metabolic processes, which are largely based on redox reactions

Redox: reducing-oxidating reactions

This property provides the possibility of cycling carbon between its "inorganic form" and its "organic form"

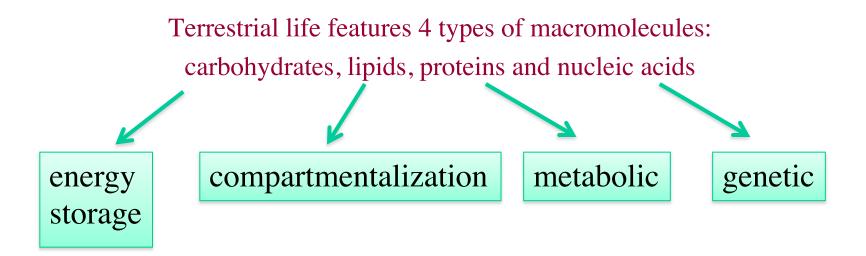
CO₂: inorganic carbon

CH₄: organic carbon

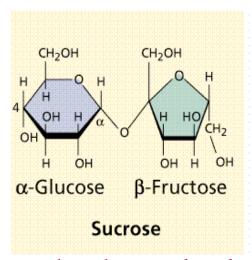
The great capability of carbon to form complex structures is supported by astronomical observations of interstellar molecules

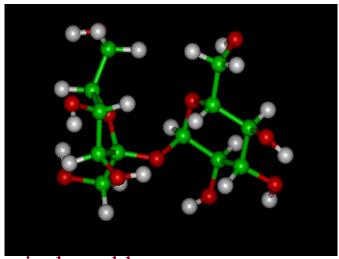
All interstellar molecules with at least 6 atoms are organic

Table 5.4 Some complex carbon compounds detected in the interstellar medium and meteorites.


8	9	> 9
OTT OOTTO		/ 3
CH_3OCHO	$(CH_3)_2O$	$(CH_3)_2CO$
$\mathrm{CH_3C_3N}$	CH_3CH_2OH	$\mathrm{HC}_{9}\mathrm{N}$
C_7H, H_2C_6	$\mathrm{CH_{3}CH_{2}CN}$	$HC_{11}N$
	HC_7N	C_6H_6, C_{60}^+
	CH_3C_4H , C_8H	PAHs,
	$\mathrm{CH_3C_4N}$	glycine?
		CH_3C_3N CH_3CH_2OH C_7H, H_2C_6 CH_3CH_2CN HC_7N CH_3C_4H, C_8H

From carbon atoms to biological macromolecules


Carbon is the most abundant constituent of the macromolecules of terrestrial life


The most important biomolecules of terrestrial life are macromolecules with a large number of atomic units (e.g., $10^6 - 10^8$ amu)

Macromolecules result from the polymerization of a large number of subunits (monomers)

Carbohydrates (saccharides)

The most abundant molecules in the biological world

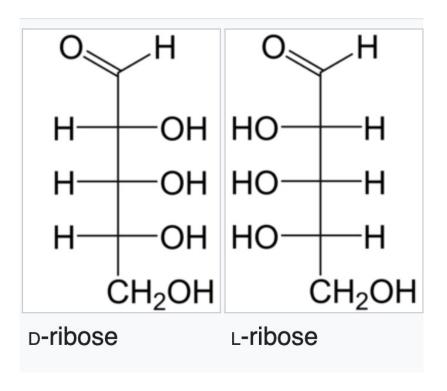
Primary source of chemical energy for most organims

General formula: $C_x(H_2O)_y$

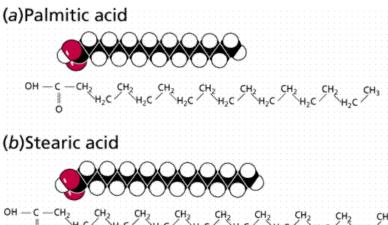
Monosaccharides (simple sugars)

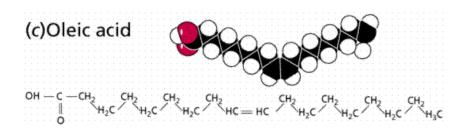
Oligosaccharides

From 2 to 10 units of monosaccharides


Polysaccharides

More than 10 monosaccharides


Carbohydrates


Ribose

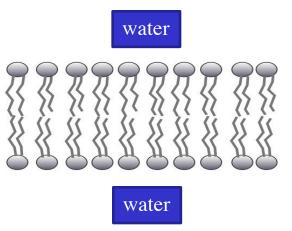
Simple sugar that is found in RNA
In biology only appears in the form D-ribose
Example of homochirality of biological molecules

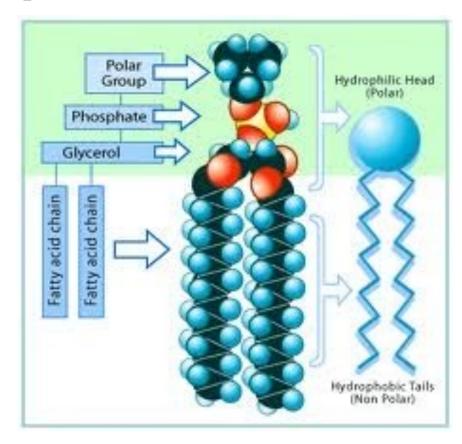
Lipids

Heterogeneous class of organic molecules with common solubility properties

Insoluble in water

Soluble in certain types of non-polar solvents


Larger number of C–H bonds with respect to carbohydrates


Used for <u>long-term storage of energy</u>

Phospholipids

Examples of <u>amphiphilic</u> molecules with a <u>hydrophilic</u> end and a <u>hydrophobic</u> end

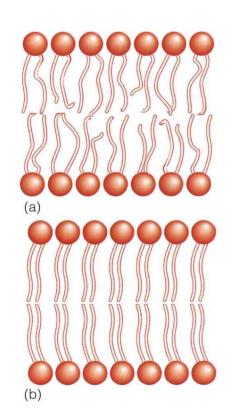
In liquid water phospholipids spontaneously form a double layer of molecules (bilayer), with the hydrophobic ends facing each other in the inner part, and the hydrophilic ends facing the water



Phospholipids and cell membranes

Bilayers of phospholipids are the main structural components of <u>cell membranes</u>

Specialized proteins embedded in the bilayer provide the possibility to exchange molecular constituents in and out of the cell



Phase transitions of biological membranes

Cell membranes need to be sufficiently rigid to encase life's molecular machines while being flexible enough for cell division

Physiological temperature: liquid crystal

Below a limiting temperature: gel (frozen motion)

Atkins & De Paula, Physical Chemistry for Life Sciences, 2011, p. 108