Exoplanets Properties of the host stars

Planets and Astrobiology (2022-2023) Giovanni Vladilo & Paolo Simonetti

Distances of exoplanets

Most planets found between 10 and 1000 pc

Number of stars increases with sampled volume Signal-to-noise ratio of stellar data decreases with increasing distance

Distance to a host star (pc)

Characterization of the host stars

- Motivations
 - Accurate determination of <u>stellar masses and radii</u> are required to improve the accuracy of the exoplanet measurements obtained with the Doppler and transit methods
 - Accurate measurements of <u>stellar distances</u> are fundamental to calibrate stellar parameters
 - <u>Stellar ages</u> indicate the evolutionary state of the hosted planets, since the process of planetary formation takes place over shorter time scales compared to those of stellar evolution
 - The <u>space frequency and intrinsic luminosity of stars</u> of different spectral types determines the efficiency of observational surveys with indirect methods

Characterization of the exoplanet host stars

• Properties of the host stars of exoplanets are derived from a combination of astrometric, photometric, and spectroscopic observations, interpreted primarily within the context of stellar evolutionary models

• Exoplanets have been found around stars with different masses, at different stages of evolution, and at different locations in the Galaxy

Hertzprung-Russel (HR) diagram

Theoretical diagram: L_* versus T_{eff} Zero-age main sequences for low-mass stars versus Helium and "metal"abundances (Y and Z, respectively)

Evolutionary tracks in HR diagrams are calculated for different masses and metallicities (stellar composition)

Absolute luminosity ← stellar distances

- Astrometric measurements provide the database of the most accurate determinations of parallatic angles and stellar distances
- Early 1990's: Hipparcos satellite \rightarrow 1 mas accuracy for about 1.2x10⁵ stars

Improvement in the knowledge of exoplanet host star distances by Hipparcos for the 100 brightest stars with exoplanets known with Doppler method in 2010. Left: ground based compilations of distances. Right: Hipparcos distances.

Astrometry and stellar distances

- The Gaia mission (ESA)
 - http://gaia.esa.int
 - Unbiased survey of >10⁹ point-like Galactic sources (6-20 mag)
 - Astrometric precision, up to 10 µas for the brightest sources, in the range of a few tens µas for other sources
 - Intermediate resolution spectra for ~ 150 x 10^6 stars
 - Great increase of the accuracy of exoplanet host-star distances
 - Stars with distances larger than 50-100 pc most greatly benefit with respect to previous measurements based on Hipparcos

Statistical properties of exoplanet host stars

- Exoplanet surveys provide the opportunity to search for correlations between the frequency of detected planets and the properties of the host stars
- Trends between stellar and planet properties cast light on the process of planetary formation
- Among the stellar properties investigated, we consider
 - Masses
 - Kinematic properties
 - Metallicities
 - Elemental abundance ratios

Planet fraction vs stellar mass

- significant different between the distribution of radii of planets orbiting M-type stars vs planets orbiting FGK-
- differences within the FGK-type star group are much smaller
- stellar and planetary masses seems correlated, although not strongly

Metallicity of the host star

• Definition

The abundance by number of an element X relative to hydrogen (also called "absolute abundance") is usually expressed in logarithmic units, relative to a reference value of solar abundance:

 $[X/H] = \log (N_X/N_H) - \log (N_X/N_H)_{\odot}$

- For elements heavier than He, a measurement of stellar [X/H] is an indicator of stellar "metallicity"
- The most classical indicator is [Fe/H], since iron lines are easy to measure in stellar spectra
- The metallicity is an indicator of Galactic chemical evolution
 - Metals are produced by stellar nucleosynthesis and ejected in the interstellar medium
 - Stars born from the interstellar medium previously enriched by metals have a higher metallicity than stars of previous generations

Metallicity distribution of planet-hosting stars: experimental data

- The frequency of planet-hosting stars increases with metallicity and peaks at abundances higher than solar
- Due to selection effects, the result is dominated by the statistics of giant planets

Metallicity distribution: planet-hosting stars versus comparison stars

• Statistical comparison between the two samples indicates that stars that host planets have a higher level of metallicity than stars without planets

The trend with metallicity is observed for giant planets, but not for planets with lower mass

(Sousa et al. 2011)

Trends with metallicity for different planetary radii

Owen and Murray-Clay (2018)

Buchhave et al. (2012)

More metallic stars host, on average, larger planets

Metallicity distribution of planet-hosting stars: interpretation of the excess of high-metallicity planet hosts

- The role of selection effects is not clear
 - The majority of the sample of detected exoplanets could be representative of a specific subset of the overall exoplanet population
- If selection bias is not important, three types of interpretation have been advanced
 - Primordial occurrence
 - Self-enrichment
 - Different Galactic origins (not discussed here)
- Understanding the correct interpretation would cast light on the process of planetary formation
- A larger statistics is required to understand if a trend exists for low-mass planets

Metallicity distribution of planet-hosting stars: interpretation

• Primordial occurrence

- According to this hypothesis, the high metallicity observed in certain hosts is a bulk property of the star, and represents the original composition out of which the protostellar and protoplanetary disk formed
- In this picture, <u>the higher the metallicity of the primordial cloud</u>, <u>the higher the dust-to-gas ratio in the protoplanetary disk</u>
- <u>A high dust-to-gas ratio facilitates condensation of solids and</u> accelerates protoplanetary accretion before the gas disk is lost
- At low metallicity, the protoplanetary material not used to build up giant planets would become available to accrete low-mass planets
- This could explain why the mechanism is effective for giant planets, but apparently not for low-mass planets

Metallicity distribution of planet-hosting stars: interpretation of the excess of high-metallicity planet hosts

• Self-enrichment

- In this interpretation, the high metallicity is a phenomenon restricted to the surface layers of the star, arising from the capture of metal-rich material, and the resulting "pollution" of the outer convective envelope
- The pollution could result from inward migration of a planet onto the star as a result of dynamical friction
- <u>Stars with protoplanetary disks would accrete more rocky material and</u> <u>hence their surface metallicity would rise</u>
- This hypothesis was advanced when the metallicity-occurrence trend was discovered, but is not supported by observational evidence

Abundance ratios in stars with and without planets

- Several studies have searched for systematic differences of element-toelement abundance ratios in stars with and without planets
- With a few exceptions, most studies indicate that the relative abundances [X/Fe] are basically similar in stars with and without planets

Open circles: planet host stars Crosses: comparison stars Dashed lines: solar abundances

Tentative evidence for enrichment of α elements in low-metallicity, planethosting stars (Adibekyan et al. 2012)

If confirmed, it would suggest a dependence of planetary formation efficiency on the initial chemical composition of the protoplanetary cloud

The red squares and blue triangles represent stars with Jupiter-mass and Neptunian/super-Earth mass Black dots: stars without planetary companion

Fe/H

- The lack of a strong trend between planet occurrence and element-toelement abundance ratios suggests that:
 - the metal enrichment of planet hosting stars is primordial, rather than due to self-enrichment
 - it is not necessary to invoke exceptional events of chemical enrichment (such as the pollution by a nearby supernova) in order to trigger planetary formation
- Minor trends may reveal important details of the planetary formation process
 - E.g., relative importance of refractory and volatile material in the process of planetary formation

Planets in binary stellar systems

- Planets in binary/multiple stellar systems
- A significant fraction (~50%) of stars in our Galaxy are binary (or higher multiplicity) stars
- Exoplanets have been found around binary stars (~220 of which ~50 in high multiplicity star systems)

Planets in binary stellar systems

- High-mass stars (OBA) tend to have companions more often than low-mass stars (M)
- Huge variety of binary semi-major axis values: from 0.01 to 10^5 AU (for comparison: 1 pc = $2x10^5$ AU)

Raghavan et al. (2010)

Circumstellar planets

- Most of the known planet-hosting binary systems have planets in Stype orbits
- The presence of a binary companion seems to suppress the occurrence rate with respect to single stars This suppression acts logarithmically for binary semi-major axis $a_b < 200$ AU, reaching 000 for ~10 AU The presence of a binary
- for $\sim 10 \text{ AU}$
- There are outliers: shortest period planet-hosting binary have $a_{b}=1.1$ AU

Moe & Kratter (2021)

Circumbinary planets

- The number of known
 circumbinary planets is
 considerably smaller than the
 number of known circumstellar
 ones
- Possibly difficult to form planets if $a_b > 0.3$ AU
- Protoplanetary disks observed also around stars up to ~20 AU of separation, but most of those with $a_b > 1$ AU are dynamically unstable

Known (in summer 2020) Main Sequence binary systems hosting circumbinary planets

Simonetti et al. (2020)