Functional groups in biomolecules

Groups of atoms that are responsible for the chemical properties of biomolecules

TABLE 2.1 Common Functional Groups Found in Biomolecules

Chemical groups and monomers of large molecules

The biomolecules of terrestrial life

Planets and Astrobiology (2018-2019)

G. Vladilo

Phosphate group Sugars Nucleotides Energy exchange molecules Aminoacids

Sugars

General formula: $C_x(H_2O)_y$

Sugars in nucleic acids Ribose $C_5H_{10}O_5$ Deoxyribose $C_5H_{10}O_4$

Homochirality of terrestrial biomolecules

Also most <u>biological sugars</u> are <u>homochiral</u> They are D type (according to a different convention)

13

Racemic and non-racemic mixtures

<u>Racemic</u> mixture has equal amounts of left- and right-handed enantiomers of a chiral molecule

The non biological world is racemic The biological world shows an extreme enantiomeric eccess (only one enantiomer)

> This difference may provide a way to discriminate biological from non-biological compounds if we have the possibility to analyse a sample

Biological macromolecules Carbohydrates (saccharides)

The most abundant molecules in the biological world Primary source of <u>chemical energy</u> for most organims General formula: $C_x(H_2O)_y$ Monosaccharides (simple sugars) Oligosaccharides From 2 to 10 units of monosaccharides Polysaccharides More than 10 monosaccharides

Heterogeneous class of organic molecules with common solubility properties <u>Insoluble in water</u> Soluble in certain types of non-polar solvents Larger number of C-H bonds with respect to carbohydrates Used for <u>long-term storage of energy</u>

Phospholipids and cell membranes

Phospholipids

Examples of <u>amphiphilic</u> molecules with a <u>hydrophilic</u> end and a <u>hydrophobic</u> end

In liquid water phospholipids <u>spontaneously</u> form a double layer of molecules (<u>bilayer</u>), with the hydrophobic ends facing each other in the inner part, and the hydrophilic ends facing the water

Bilayers of phospholipids are the main structural components of <u>cell membranes</u>

Biological macromolecules Proteins Proteins are polymers of amino acids Short chains of amino acids are called <u>peptydes</u> Long, unbranched peptyde chains are called <u>polypeptides</u> Proteins are formed by one or more chains of polypeptides Molecular masses of proteins vary between ~10³ e ~10⁶ atomic mass units They contribute to about half the mass of the cell

Proteins play fundamental functions in living organisms Mostly <u>structural</u> and <u>enzymatic</u> (i.e., catalytic) functions

The amino acids of terrestrial life

Proteins use only 20 types of amino acids, all of L-type

Organic chemistry allows for the existence of <u>thousands</u> of amino acids

Apparently, terrestrial life has "<u>chosen</u>" a <u>short list</u> of amino acids, sufficiently representative of the different types of chemical properties required to build up the variety of proteins necessary to living organisms

Table 7.2 The Twenty Amino Acids

Found in Living Organisms

Amino Acid*	Chemical Formula	Number of Atoms
L-Alanine	C ₃ H ₇ O ₂ N	13
L-Arginine	$C_6H_{15}O_2N_4$	27
L-Asparagine	$C_4H_8O_3N_2$	17
L-Aspartic Acid	$C_4H_6O_4N$	15
L-Cysteine	C ₃ H ₇ O ₂ NS	14
L-Glutamic Acid	$C_5H_8O_4N$	18
L-Glutamine	$C_5H_{10}O_3N_2$	20
Glycine	$C_2H_5O_2N$	10
L-Histidine	$C_6H_9O_2N_3$	20
L-Isoleucine	$C_6H_{13}O_2N$	22
L-Leucine	$C_6H_{13}O_2N$	22
L-Lysine	$C_6H_{15}O_2N_2$	25
L-Methionine	$C_5H_{11}O_2NS$	20
L-Phenylalanine	$C_9H_{11}O_2N$	23
L-Proline	C5H9O2N	17
L-Serine	C3H7O3N	14
L-Threonine	C4H9O3N	17
L-Tryptophan	$C_{11}H_{12}O_2N_2$	27
L-Tyrosine	$C_9H_{11}O_3N$	24
L-Valine	C5H11O2N	19

17

Amino acids are bound to each other with peptide bonds The carboxyl end ties to the amino end of the next molecule A sequence OC-NH is formed (peptide bond) A water molecule is released each time a peptide bond is created A water molecule is required to break a peptide bond

The sequence of lateral groups determine the properties of the protein

Nucleic acids: RNA

RNA has a single strand of nucleotides

The backbone of the strand is made up of a sequence of phosphate groups and <u>ribose</u> sugars

Has 4 types of nucleobases

Purines Adenine, Guanine Pyrimidines Cytosine, Uracyl

RNA drives the synthesis of proteins

The order of the nitrogen bases on the backbone determines the sequence in which amino acids are assembled

25

Nucleic acids: DNA

DNA has two strands that form a double helix structure

The backbone of each strand is made up of a sequence of phosphate groups and <u>deoxyribose</u> sugars

DNA has 4 types of nucleobases

2 purins

Adenine e Guanine

2 pyrimidins

Cytosine e Thymine Thymine replaces Uracyl, which is instead used in the RNA

The complementarity of purines and pyrimidines plays a fundamental role in the pairing between the two strands

, only (wo.