				Number of Atoms							
	2	3	4	5	6	7	8	9	10	11	
	$\overline{H_2}$	C ₃	e-C ₃ H	C ₅	C₅H	C ₆ H	CH ₃ C ₃ N	CH_3C_4H	CH ₃ C ₅ N?	HC ₉ N	
	AIF	C_2H	$1-C_3H$	C_4H	$1-H_2C_4$	CH ₂ CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO		
	AIC1	C20	C ₃ N	C ₄ Si	C_2H_4	CH_3C_2H	CH ₃ COOH?	(CH ₃) ₂ O	NH ₂ CH ₂ COOH?		
	C2	C_2S	C ₃ O	$1-C_3H_2$	CH ₃ CN	HC5N	C ₇ H	CH ₃ CH ₂ OH			
	CH	CH_2	C ₃ S	$c-C_3H_2$	CH ₃ NC		H_2C_6				
	CH ⁺	HCN	C_2H_2	CH ₂ CN	CH ₃ OH			C ₈ H	C_4 H CH ₂ C,N? CH ₂ CN (CH ₂) ₂ CO D_2 O NH ₂ CH ₂ COOH? D_2 O NH ₂ CH ₂ COOH? N N		
	CN	HCO	CH ₂ D+?	CH ₄	CH ₃ SH	c-C ₂ H ₄ O					
hemistry (1) $\begin{array}{cccc} co & Hco^+ & HcN & Hc_N & Hc_N^+ \\ co^+ & HcS^+ & HcNH^+ & Hc_Nc & Hc_CHO \\ cp & Hoc^+ & HcNO & HcOOH & NH_{2}CHO \\ csi & H_{2}O & HNCS & H_{2}CHO & c_N \\ Hcl & H_{5}S & HoCo^+ & H_{2}C_N \\ Hcl & H_{5}S & HoCo^+ & H_{2}C_N \\ Hcl & H_{5}S & HoCo^+ & H_{5}C_N \\ Hcl & H_{5}S & H_{5}CHO & c_N \\ Hcl & H_{5}S & Hcl \\ Hcl & Hcl & Hcl \\ Hcl & Hcl$											
							Inte	erstellar 1	nolecules		
		£									
						0H NH ₂ CH ₃ C ₆ H SH c-C ₂ H ₄ O NH ⁺ CHO Lateratellar melecul	e number o	or ato			
	NH	HNO	H ₂ CN	HNC ₃	$H_{2C_{2}O}$ listed according to the num $H_{3,NCN}$	harnley (200)0)				
	NO	MgCN	H ₂ CS	SiH4						<u>´</u>	
	NS	MgNC	H ₃ O ⁺	H ₂ COH ⁺							
	NaC1	N_2H^+	NH ₃	-							
	OH	N ₂ O	SiC ₃								
	PN	NaCN							_		
	SO	OCS		All	molecu	les with	a large n	number o	f atoms are	orga	
	SO+	SO ₂			•.1			1	1 1		
	SiN	c-SiC ₂		Atoms with low cosmic abundance are only detected in							
	SiO	CO_2		sma	nall molecules						
	SiS	NH ₂		Jina		04105					
	CS HF	H_{3}^{+}									

Interstellar molecules

- About two hundreds gas-phase molecular species have been detected so far
- Besides simple molecules with a few atoms, also complex molecules with a relatively large number of atoms have been detected

http://www.astro.uni-koeln.de/cdms/molecules

- Observational bias:

Different types of molecules are observed in different types of interstellar or circumstellar regions Some of them are only observed in dense molecular clouds

Symmetric molecules are harder to detect: they could be more abundant than what observed

Small interstellar molecules

- Found in *diffuse* molecular clouds - molecular clouds with relatively low extinction
- Large molecules are absent in *diffuse* clouds because of:
 - physical conditions
 - diffuse clouds are less protected from interstellar radiation field than denser molecular clouds
 - observational limitations diffuse clouds have relatively low column densities and this fact makes hard to detect large molecules, characterized by a low abundance

Weight	Species	Method	Target	N(X)/N _H		
2	H_2	UV	ζ Oph	0.56		
3	HD	HD UV		4.5 (-7)		
3	H ₃ +	IR	ζ Per	5.1 (-8)		
13	CH	Optical	ζ Oph	1.5 (-9)		
3	CH ⁺	Optical	ζ Oph	2.4 (-8)		
14	13CH+	Optical	ζ Oph	3.5 (-10)		
15	NH	Optical	ζ Oph	6.2 (-10)		
17	OH	UV	ζ Oph	3.3 (-8)		
24	C2	Optical	ζ Oph	1.3 (-8)		
25	C ₂ H	mm abs.	BL Lac	1.8(-8)		
26	CN	Optical	ζ Oph	1.9 (-9)		
27	HCN	mm abs.	BL Lac	2.6 (-9)		
27	HNC	mm abs.	BL Lac	4.4 (-10)		
28	N ₂	UV	HD 124314	3.1 (-8)		
28	CO	UV	X Per	6.4 (-6)		
29	HCO+	mm abs.	BL Lac	1.5 (-9)		
29	HOC+	mm abs.	BL Lac	2.2 (-11)		
29	¹³ CO	UV	X Per	8.9 (-8)		
29	C17O	UV	X Per	7.4 (-10):		
30	C18O	UV	X Per	2.1 (-9):		
30	H_2CO	mm abs.	BL Lac	3.7 (-9)		
36	C3	Optical	ζ Oph	1.1 (-9)		
36	HCl	UV	ζ Oph	1.9 (-10)		
38	C_3H_2	mm abs.	BL Lac	6.4 (-10)		
14	CS	mm abs.	BL Lac	1.6 (-9)		
64	SO ₂ mm abs.		BL Lac	≤8.2 (-10)		

1

Complex interstellar molecules ("complex" for interstellar standards, not for chemists)

Examples of interstellar hydrocarbons

- · Complex interstellar molecules are hydrocarbons
- They are found in:
 - star-forming regions
 - circumstellar envelopes of evolved, late-type stars in the Asymptotic giant branch (AGB)
 - dense clouds in the direction of the Galactic center
 - Herbst & van Dishoeck (2009)

Name	Source
Ethene	circ
Butadiyne	circ
Butatrienylidene	circ, cc, lc
Pentadiynyl	circ, cc
Propyne	cc, lc
Hexatriynyl	circ, cc, lc
Hexatriynyl ion	circ, cc, lc
Hexapentaenylidene	circ, cc, lc
Triacetylene	circ
Heptatriynyl	circ, cc
Methyldiacetylene	cc
Propylene	cc
Octatetraynyl	circ, cc
Octatetraynyl ion	circ, cc
Methyltriacetylene	cc
	Ethene Buradiyne Buratrienylidene Pentadiynyl Propyne Hexatriynyl Hexatriynyl Hexatriynyl Hexatriynyl Hexatriynyl Methyldiacetylene Propylene Octatetraynyl Octatetraynyl ion

Abbreviations: circ, circumstellar envelope around evolved star/protoplanetary nebula; cc, cold cloud core; hc, hot core/corino; lc, lukewarm corino; gc, galactic center cloud; of, outflow. Not all of these molecules fulfill the strict criteria for identification listed in Section 3.3.

5

Saturation of interstellar organic molecules

- Saturated hydrocarbons
 - The chain of carbon atoms are held by single bonds
 - The remaining carbon bonds are saturated with hydrogen atoms
- Interstellar organic molecules are usually not saturated
 - Example of saturated molecule not detected in the ISM

Cyclohexane, C₆H₁₂

- Example of unsaturated molecule detected in the ISM Benzene, C₆H₆

Benzene

• Aromatic ring

- Stable electronic structure that results from the superposition of atomic orbitals; the electrons are delocalized and shared by all atoms
- Plays an important role in astrochemistry
 - Starting point for the formation of complex aromatic compounds PAHs=Polycyclic Aromatic Hydrocarbon

 NH_2

Detected multiple

Galaxy

16 12

Benzene ring Simplified depiction

Formamide An interstellar molecule of prebiotic interest rotational transitions in the sub-millimetric spectral range in molecular clouds at different locations in the

0

Distance (kpc) Adande et al. (2013)

6

12

Complex organic molecules in the interstellar medim

• Glycolaldehyde $(C_2H_4O_2)$

- Simplest sugar

- First intermediate product of the reaction which starts with formaldehyde (H_2CO) and leads to the formation of various sugars and finally of ribose, one of the DNA building blocks

Generic formula for sugars

 $C_n(H_2O)_n$

- Detected in the millimetric band towards Sagittarius B2(N), a source in the direction of the Galactic center (Hollis et al. 2000)
- Also observed by ALMA around a young, solar-type star

25620 103630 103640 103650 103660 10367

Complex organic molecules in the interstellar space The case of glycine

- Glycine is the simplest aminoacid found in biological proteins (NH₂CH₂COOH)
 - Its existence in the interstellar space would demonstrate the existence of chemical pathways potentially able to synthesise basic ingredients of life molecules in the interstellar space
 - The "lateral group" R is simply a hydrogen atom

Tentative evidence for interstellar glycine

- Several emission lines attributed to interstellar glycine have been reported

• Glycine (NH₂CH₂COOH)

 The identification is not confirmed by a subsequent analysis performed by testing a larger number of lines expected for glycine Snyder et al. (2005)

10

1010 - 921

Which is the maximum complexity of interstellar organic molecules in the gas phase?

As molecular complexity increases, the identification of the molecule tends to become uncertain

Gas-phase molecules with a high number of atoms could be present in the interstellar medium, even though it is difficult to prove their existence

Observational evidence of interstellar dust () I beside regions, dark clouds Bust grains absorb the optical/UV light of background stars I beside regions dark clouds are backer of the optical version of the optic

Interstellar dust The solid phase component of the ISM

Importance of interstellar dust in astronomy

- Effects on astronomical observations
 - Reddening and extinction of astronomical sources
 - Depletion of chemical abundances in the interstellar gas
- Physical effects in the interstellar medium
 - Transformation of UV photons into IR photons
 - Cooling of the ISM by means of thermal emission
- Effects on planetary formation
 - Essential ingredient of planetary formation in protoplanetary
- Importance in astrochemistry
 - Catalyst for the formation of interstellar molecules

Observational evidence of interstellar dust (2) Reflection nebulae

- Dust grains in reflection nebulae scatter the stellar photons
- A detailed study of reflection nebulae provides information on some physical properties of the grains
 - Albedo
 - Ratio between scattering and extinction cross-sections of dust grains
 - Phase function
 - Angular distribution of scattered light

Observational evidence of interstellar dust (3) Galactic infrared emission

- Thermal emission from interstellar dust
 - Dust is heated by interstellar radiation
 - The infrared emission cools the gas
- · Galactic infrared emission maps the distribution of interstellar dust

1983, IRAS satellite

- All sky map in the bands at 12, 25, 60 e 100 μm
- The emission is concentrated in the Galactic plane
- IR clouds ("cirrus") found outside the Galacic plane

Composite mid-and far-infrared intensity observed in the 12, 60, and 100 µm wavelength bands. Mosaic of IRAS Sky Survey Atlas images. Emission from interplanetary dust in the solar system, the "zodiacal emission," was modeled and subtracted.

Vibration modes of interstellar solids: ice and dust NH₃ CH₄ CO CO CO CH₃OH

A high spectral resolution is required to discriminate between different types of silicates Pyroxenes: $Mg_xFe_{(I-x)}SiO_3$ Olivines: $Mg_2_vFe_{2(I-y)}SiO_4$

Molecule Mode $\lambda \ (\mu m)$ H₂O O-H stretch 3.05 H-O-H bend 6.0 libration 13.3 N-H stretch 2.96 umbrella 9.35 C-H stretch 3.32 C-H deformation 7.69 C-O stretch 4.67 C-O stretch 4.27 O-C-O bend 15.3 O-H stretch 3.08 C–H stretch 3.35 C-H stretch 3.53 O-H bend, C-H deformation 6.89 C-O stretch 9.75 MgSiO₃ Si-O stretch 9.7 O-Si-O bend 19.0 Mg₂SiO₄ Si-O stretch 10.0 O-Si-O bend 19.5 FeSiO₃ Si-O stretch 9.5 O-Si-O bend 20.0 Fe2SiO4 Si-O stretch 9.8 O-Si-O bend 20.0 SiCSi-C stretch 11.2

19

Observational evidence of interstellar dust (4) Infrared absorptions

- Observations of background sources with strong IR emission along lines of sight interstecting dust-rich regions
 - Vibrational bands of solid compounds are detected in absorption
- Ice and organic compounds
 - H₂O, CO, CO₂, CH₃OH ...
- Silicates
 - 9.7 μm e 18 μm Stretching vibration modes of Si-O bonds and bending vibration modes O-Si-O modes, respectively

Examples of silicates

Pyroxenes: $Mg_xFe_{(1-x)}SiO_3$

Olivines: $Mg_{2y}Fe_{2(1-y)}SiO_4$

ISO SWS spectrum in the mid-IR (2.4 to 45 µm) towards the young stellar cluster NGC7538 IRS9 embedded in a molecular cloud (Whittet et al. 1996)

Observational evidence of interstellar dust (5) Elemental depletions

Gas-phase interstellar abundances are measured with high-resolution UV spectroscopy

The interstellar (resonance) transitions of the main ionization stages of the most abundant astrophysical elements are found in the UV range

The measurements of interstellar abundances indicate that:

- For most elements the interstellar abundances X/H, measured in the gas phase, are lower than the corresponding solar abundances
- This deficiency is known as "interstellar depletion"

Interstellar depletions

- Interpretation
 - a fraction of the atoms is incorporated in dust grains and, as a result, is not counted in the gas-phase column density measurements
- Galactic interstellar depletions are calculated assuming that the total abundance of the interstellar medium (gas plus dust) is solar

$$\delta_{\rm X} = \log_{10} (N_{\rm X}/N_{\rm H}) - \log_{10} (X/{\rm H})_{\rm sun}$$

This expression is equal to the definition of [X/H], but the physical meaning is completely different

- Interstellar depletions vary
 - between different elements
 - in different types of interstellar regions

21

Element-to-element variations of interstellar depletions

 $[X_{\rm gas}/{\rm H}]_0$

- Refractory elements
 - Strong depletions
 e.g., Ti, Ni, Fe, Cr, Mn, ...
- Volatile elements
 - Weak depletions
 e.g., S, Zn
- Correlation between depletion and condensation temperature
 - Empirical evidence that supports the interpretation of depletions in terms of incorporation of a fraction of elements in dust form

- Cold and dense clouds
 Strong depletions
- Warm and hot gas – Weak depletions
- Further evidence that depletions are due to the incorporation of atoms in dust form
 - Dust grains survive (or grow by accretion) in cold and dense clouds
 - Dust grains tend to be destroyed in hot, low density regions

Variations of depletions in different types of interstellar regions

23