Dynamical properties of the Solar System

Suggested reading:
Physics of the Earth and the Solar System
B. Bertotti and P. Farinella, Kluwer Academic Publishers

Planets and Astrobiology (2015-2016)
G. Vladilo

Dynamics of planetary orbits

• In the limit of non-relativistic motion, Newton’s laws can be applied
 – Relativistic effects should be taken into account for orbits very close to the star
• Even using the newtonian approximation, the treatment of N-body systems, such as the Solar System, is extremely complex
• However, over a short period of time, the motion of a planet around its host star can be treated as a 2-body problem, neglecting perturbations due to other bodies in the system
• In this limit, two objects can be considered to be isolated in space and to move around each other according to Keplarian laws
 – Kepler’s laws are easily shown to be the result of the inverse-square law of gravity, with the Sun as the central body, and the conservation of angular momentum and energy
 – These laws are fundamental to understand the dynamics of the Solar System and extrasolar planetary systems

First Kepler’s Law
The secondary body moves in an elliptical orbit, with the primary body at the focus
Valid for bound orbits with $E < 0$
The conservation of the total energy E yields a constant semi-major axis:
$$a = -\frac{G (m_1 + m_2)}{2E}$$

$$r = \frac{a(1-e^2)}{1+e \cos \nu}$$

$q = a(1-e)$

Second Kepler’s Law
The straight line joining a planet and the Sun sweeps out equal areas in space in equal intervals of time

Area 1 = Area 2
Second Kepler’s Law

\[dA = \frac{1}{2} r^2 d\theta \]

Area swept per unit time, where \(\omega \) is the angular velocity

\[L = mr^2\omega \]

Kepler’s 2nd Law follows from the conservation of the angular momentum

\[\frac{dA}{dt} = \frac{L}{2m} \]

Third Kepler’s Law

The meaning of the third Kepler’s law can be easily understood in the case of a circular orbit of radius \(a \)

By equating the centripetal force of the planet with the gravitational force exerted by the central body, we have

\[\frac{M_p \omega^2}{a} = \frac{G M_p M_*}{a^2} \]

From this we obtain the circular velocity

\[v_c = \sqrt{\frac{G M_*}{a}} \]

and the period

\[P = \frac{2\pi a}{v_c} = 2\pi \sqrt{\frac{a^3}{GM_*}} \]

This last expression yields the third Kepler’s law for the case \(M_p \ll M_* \)

Orbital elements

- In order to locate in 3D space the positions of a body moving in an elliptical orbit, a set of 6 orbital parameters (or elements) is required
- The orbital elements specify the size, shape, and orientation of the orbit in space and the position of the body at a particular instant in time (the “epoch”)
- Commonly used parameters are
 - \(a \) = the semi-major axis of the ellipse
 - \(e \) = the eccentricity of the ellipse
 - \(i \) = the inclination of the orbital plane to the reference plane
 - \(\Omega \) = the longitude of the node of the orbital plane on the reference plane
 - \(\omega \) = the argument of the pericenter
 - \(T \) = the epoch at which the body is at the pericenter

\[P^2 = \frac{4 \pi^2 a^3}{G (M_* + M_p)} \]

where \(M_* \) and \(M_p \) are the mass of the central star and planet, respectively. Since \(M_p \ll M_* \), in practice we have

\[P^2 \approx \frac{4 \pi^2 a^3}{GM_*} \]
Orbital elements

- Orbital parameters of the Solar System planets

<table>
<thead>
<tr>
<th>Object</th>
<th>a (AU)</th>
<th>P (days)</th>
<th>e</th>
<th>I (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>0.387</td>
<td>87.97d</td>
<td>0.206</td>
<td>7.00</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.723</td>
<td>224.70d</td>
<td>0.007</td>
<td>3.99</td>
</tr>
<tr>
<td>Venus</td>
<td>1.000</td>
<td>365.25d</td>
<td>0.017</td>
<td>0.00</td>
</tr>
<tr>
<td>Mars</td>
<td>1.524</td>
<td>686.98d</td>
<td>0.093</td>
<td>1.85</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5.203</td>
<td>11.86y</td>
<td>0.048</td>
<td>1.30</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.539</td>
<td>29.46y</td>
<td>0.056</td>
<td>2.49</td>
</tr>
<tr>
<td>Uranus</td>
<td>19.182</td>
<td>84.01y</td>
<td>0.047</td>
<td>0.77</td>
</tr>
<tr>
<td>Neptune</td>
<td>30.058</td>
<td>164.79y</td>
<td>0.009</td>
<td>1.77</td>
</tr>
<tr>
<td>Pluto</td>
<td>39.44</td>
<td>247.7y</td>
<td>0.250</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Rotation periods and tilt of rotation axis

<table>
<thead>
<tr>
<th>Object</th>
<th>a (AU)</th>
<th>P (days)</th>
<th>e</th>
<th>I (deg)</th>
<th>P_s (days)</th>
<th>ɛ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>0.387</td>
<td>87.97d</td>
<td>0.206</td>
<td>7.00</td>
<td>25.4</td>
<td>7.25</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.723</td>
<td>224.70d</td>
<td>0.007</td>
<td>3.99</td>
<td>58.65</td>
<td>0</td>
</tr>
<tr>
<td>Venus</td>
<td>1.000</td>
<td>365.25d</td>
<td>0.017</td>
<td>0.00</td>
<td>243.0</td>
<td>178</td>
</tr>
<tr>
<td>Earth</td>
<td>1.000</td>
<td>365.25d</td>
<td>0.017</td>
<td>0.00</td>
<td>1.00</td>
<td>23.4</td>
</tr>
<tr>
<td>Mars</td>
<td>1.524</td>
<td>686.98d</td>
<td>0.093</td>
<td>1.85</td>
<td>1.026</td>
<td>25.0</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5.203</td>
<td>11.86y</td>
<td>0.048</td>
<td>1.30</td>
<td>0.410</td>
<td>3.08</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.539</td>
<td>29.46y</td>
<td>0.056</td>
<td>2.49</td>
<td>0.426</td>
<td>26.7</td>
</tr>
<tr>
<td>Uranus</td>
<td>19.182</td>
<td>84.01y</td>
<td>0.047</td>
<td>0.77</td>
<td>0.720</td>
<td>97.9</td>
</tr>
<tr>
<td>Neptune</td>
<td>30.058</td>
<td>164.79y</td>
<td>0.009</td>
<td>1.77</td>
<td>0.670</td>
<td>28.8</td>
</tr>
<tr>
<td>Pluto</td>
<td>39.44</td>
<td>247.7y</td>
<td>0.250</td>
<td>17.2</td>
<td>6.387</td>
<td>94</td>
</tr>
</tbody>
</table>

Gravitational perturbations

- When more than 2 bodies are present, the gravitational perturbations induced by the other bodies will alter the orbital and rotational parameters of the system
 - Example: precession of the pericenter which, in the case of the Earth, yields the well-known precession of the equinox
- Different types of perturbations exist, characterized by different intensities and time scales
 - To study perturbations we introduce the concept of resonance

- Period and semimajor axis obey to 3^{rd} Kepler’s law
- Eccentricity is generally low
- Orbits are approximately coplanar, with small inclinations I relative to the ecliptic
- Orbital spins are generally aligned with the spin of solar rotation

Rotation is generally prograde with the rotation spin of the Sun
Obliquity with respect to the ecliptic generally < 30 degrees
Exceptions: Venus, Uranus
Resonances

- When the ratio of dynamical periodicities of two bodies can be expressed as the ratio of two small integers, gravitational perturbations tend to cumulate, leading to a resonance
 \[\frac{P_1}{P_2} = \frac{n}{m} \]

- Resonances may stabilize or destabilize orbits

- Since the orbital period \(P \) and semimajor axis \(a \) are linked though the 3rd Kepler’s law, resonances play a key role in shaping the architecture of planetary systems

Orbital resonances

Examples of orbital stabilization

- Concentrations of minor bodies stabilized by dynamical effects
 - Hilda family: orbital resonance 3:2 with Jupiter
 - Trojans: resonance 1:1 with Jupiter

Examples of orbital destabilization

Distribution of semimajor axis in the main asteroid belt

Gaps result from the ejection of asteroids from regions in resonance with Jupiter’s orbital period
Other examples of resonances
- The architecture of rings around giant planets results from resonance effects between debris material that surrounds the planets and satellites orbiting the same planets
- Such resonance effects generate gaps in the debris material, leading to the formation of the characteristic ring pattern

Effects of gravitational perturbations on the tilt of the planet rotation axis
- The tilt of the rotation axis influences the planetary climate and habitability
- Gravitational torques between different planets tend to alter the tilt of the rotation axis in a chaotic fashion
 - For instance, the axis tilt of Mars is believed to evolve significantly, leading to extreme inclinations in some epochs
 - This is not the case for the Earth, since the axis tilt of our planet is stabilized by the presence of the Moon
 - Therefore, the Earth’s axis experiences small oscillations of its obliquity around its typical value of 23.5 degrees
Relativistic effects

- Relativistic effects play a small but detectable role
 - In the Solar System they are most evident in the precession of the perihelion of the orbit of Mercury, the planet deepest in the Sun’s gravitational potential well
 - General relativity adds 43 arcsec/century to the precession rate of Mercury’s orbit, which is 574 arcsec/century
 - Prior to Einstein’s theory of General Relativity (1916) it was thought that the excess in the precession rate of Mercury was due to an hypothetical planet (“Vulcan”) orbiting interior to it, which has never been detected

Tidal effects

Tidal effects are ubiquitous in the universe

An example is provided by two bodies interacting gravitationally, the size of at least one of them being not negligible with respect to their mutual distance $R \sim r$

In this case gravity gradients give rise to forces and torques that cause deformations and changes in the rotational state of affected bodies

Tidal forces tend to vanish very rapidly with distance

From differentiation of Newton’s law in distance, $f_T \sim r^{-3}$

Surface tides

Surface tides can be understood by calculating the vectorial sum of the centrifugal force and the gravitational force (with its gradient inside the planet or satellite)

Tidal locking

- Mechanism
 - Tidal forces create a bulge
 - If $P_{rot} > P_{orb}$, the body rotates through its tidal bulge, generating internal friction
 - Friction slows downs the rotation period
 - The friction stops when $P_{rot} = P_{orb}$

- We say that a body is “tidally locked” when tidal effects have slowed down the rotation period to $P_{rot} = P_{orb}$

- Examples
 - Satellites around planets: Moon-Earth and Titan-Saturn systems
 - Important for extrasolar planets close to their central star
Tidal heating

- The dissipation of tidal forces leads to internal heating of satellites
- The best known example is the satellite Io, orbiting Jupiter

Combined effects of tidal locking and resonances

The case of the Jupiter satellites

- Io is tidally locked
- Europa and Ganymede are in resonance

Dynamical stability of the Solar System

- How stable is the Solar System?
 - We are not able to provide a simple analytical description of the dynamical evolution of a set of N > 3 bodies under the effects of reciprocal gravitational interaction
 - The long-term dynamical stability of the Solar System can be tested with N-body gravitational simulations
- N-body simulations indicate that small variations of the orbital parameters of the solar system bodies lead to unstable configurations, with possible ejection of a body from the system
- This type of investigation confirm that dynamical interactions are essential in shaping the architecture of planetary systems