Proprietà fisiche del Mezzo Interstellare

Lezione ISM 2 G. Vladilo

Astronomia Osservativa C, ISM 2, Vladilo (2011)

Il Mezzo Interstellare come laboratorio di fisica

• Fisica delle banse densità

- Il vuoto più spinto
 - Nell'aria a livello del mare ci sono ~ $3x10^{19}$ molecole per cm³
 - Nel "vuoto" che si riesce a ottenere in laboratorio possono ancora esserci circa $\sim 10^9$ molecole per cm³
 - Nel mezzo interstellare della Via Lattea c'è mediamente ~1 atomo di idrogeno per cm³
 - Nelle fasi meno dense (più calde) del mezzo interstellare la densità è di circa 10⁻² o 10⁻³ atomi cm⁻³

• Fisica delle alte energie

- Accelerazione di raggi cosmici a velocità relativistiche
- Collisioni di raggi cosmici con protoni in nubi interstellari

Il Mezzo Interstellare come laboratorio astrofisico

- Effetti di "feedback" stellare
 - Campi di radiazione
 - Fotoionizzazione da stelle calde
 - Shocks collisionali
 - Venti stellari
 - Esplosioni di supernove
- Lo studio dei processi fisici interstellari sono propedeutici allo studio del mezzo intergalattico

A loro volta, gli studi del mezzo intergalattico sono fondamentali in cosmologia

Astronomia Osservativa C, ISM 2, Vladilo (2011)

3

• Brevi cenni introduttivi su

- Processi fisici in regioni circumstellari
- Processi fisici nel mezzo interstellare diffuso

L'enfasi del presente corso è sul mezzo interstellare diffuso

Nubi fotoionizzate

- Nebulose di emissione
 - Regioni HII
 - Esempio classico di fotoionizzazione stellare
 - Stella centrale massiccia, tipicamente di tipo OB Esempio: NGC 604
- Nebulose planetarie
 - Stella centrale in una fase finale della propria evoluzione
 - Fotoionizzazione del materiale circumstellare espulso dalla stella durante le precedenti fasi evolutive

Esempio: NGC 7293

Astronomia Osservativa C, ISM 2, Vladilo (2011)

• Parametri fisici tipici delle regioni HII circumstellari

Si ricavano da studi di righe in emissione di cui mostreremo alcuni esempi

- $-~T\sim 10^4~{\rm K}$
- $n \sim 0.1 \dots 10^4 \text{ cm}^{-3}$

Associate a regioni di formazione stellare e nubi molecolari

- Diamo un cenno introduttivo sui processi fisici
 - Vedere libro di Osterbrock

Diagnostici osservativi delle regioni HII

- Righe di ricombinazione
 - Diseccitazione radiativa successiva alla ricombinazione
 - I livelli elettronici atomici non riescono a essere popolati per collisioni
 - Sono popolati mediante processi di ricombinazione
 - Esempi
 - Riga Hα λ6563 Å
 - Riga HeI λ5876 Å
- I fotoni del continuo di Lyman e della serie di Lyman sono riassorbiti e non emergono dalla nebula

Astronomia Osservativa C, ISM 2, Vladilo (2011)

7

Diagnostici osservativi delle regioni HII

• Transizioni proibite

- Collisioni tra elettroni e ioni eccitano livelli di bassa energia degli ioni
 - La diseccitazione radiativa di tali livelli ha una bassa probabilità di transizione (righe proibite)
 - Alle basse densità di tali regioni la probabilità di transizione radiativa è comunque più alta della diseccitazione collisionale Il gas è trasparente per tali transizioni
- Esempi
 - [OIII] λλ4959, 5007 Å
 - [NII] λλ6548, 6583 Å

Diagnostici osservativi delle regioni HII

Evidenze di stratificazione

Astronomia Osservativa C, ISM 2, Vladilo (2011)

Diagnostici osservativi delle regioni HII

Evidenze di stratificazione

Nubi ionizzate collisionalmente

• Resti di Supernova

- Il gas si ionizza a causa delle onde d'urto supersoniche generate dall'esplosione di Supernova
- Il materiale è stato precedentemente espulso dalla stella
 - Dapprima come vento stellare di una stella massiccia
 - Quindi come materiale espulso dalla supernova Esempio: SNR N49 nella LMC
- L'interazione con il mezzo interstellare avviene in tre fasi
 - Fase di espansione libera
 - Fase adiabatica
 - Fase isoterma ("snowplough")
- Esempi di modelli dettagliati
 - McKee & Cowie (1975)

Astronomia Osservativa C, ISM 2, Vladilo (2011)

11

Cenni sullo stato fisico del gas diffuso

- Classificazioni delle regioni di gas diffuso
- Valori tipici dei parametri fisici nelle varie regioni
- Principi fisici del mezzo interstellare
- Processi di riscaldamento e raffreddamento del gas

Classificazione delle regioni interstellari sulla base dello stato fisico dell'idrogeno

- L'idrogeno è l'elemento di gran lunga più abbondante
 - Abbondanze interstellari simili a quelle solari H > 90% degli atomi
- Regioni interstellari caratterizzate dallo stato dell'idrogeno
 - Idrogeno atomico ionizzato (H+ o HII)
 - Idrogeno atomico neutro (Hº o HI)
 - Idrogeno molecolare (H₂)
- Spesso tali regioni sono dominate da un solo stato dell'idrogeno
 - HII oppure HI oppure H_2
- Transizioni tra le diverse regioni sono sottili
 - HII \rightarrow HI \rightarrow H₂

Astronomia Osservativa C, ISM 2, Vladilo (2011)

13

Regioni HII

Valori tipici dei parametri fisici, ricavati da diversi tipi di diagnostici osservativi (vedere libro di Spitzer per maggiori dettagli)

- Gas HII diffuso ("warm ionized" gas)
 - $T \sim 8 \ge 10^3 \text{ K}$
 - $n \sim 0.03 \text{ cm}^{-3}$
 - Caldo, tenue, diffuso

• Evidenziato dall'emissione diffusa di H α

- Gas coronale ("hot ionized" gas)
 - $T \sim 5 \ge 10^5 \text{ K}$
 - $n \sim 0.006 \text{ cm}^{-3}$
 - Molto caldo, tenue, diffuso
 - Evidenziato dalle specie di alta ionizzazione e dall'emissione X

Regioni HI

Valori tipici dei parametri fisici

- "Cool neutral" gas
 - $T \sim 100 \text{ K}$
 - $n \sim 25 \text{ cm}^{-3}$
- "Warm neutral" gas

 $- T \sim 8000 \text{ K}$

 $- n \sim 0.25 \text{ cm}^{-3}$

Astronomia Osservativa C, ISM 2, Vladilo (2011)

15

Regioni H₂

Valori tipici dei parametri fisici

- Nubi molecolari diffuse ("cold molecular" gas)
 - $T \sim 40 \dots 80 \text{ K}$
 - $n \sim 100 \text{ cm}^{-3}$

• Nubi molecolari scure e dense

- Siti di formazione stellare
- $T \sim 10 \dots 50 \text{ K}$
- $n \sim 10^4 \dots 10^6 \text{ cm}^{-3}$

Valori	tipici	di	pressione	termica
	nel	ga	s diffuso	

	n	Т	P/k=(n+ne)T
	[cm ⁻³]	[K]	[K cm ⁻³]
Cold neutral	≈ 25	~ 100	$\approx 2.5 \text{ x } 10^3$
Warm neutral	≈ 0.25	$\approx 8 \times 10^3$	$\approx 2 \times 10^3$
Warm ionized	≈ 0.03	$\approx 8 \times 10^3$	$\approx 2.4 \text{ x} 10^3$
Hot ionized	$\approx 6 \text{ x } 10^{-3}$	$\approx 5 \text{ x } 10^5$	$\approx 3 \times 10^3$

Astronomia Osservativa C, ISM 2, Vladilo (2011)

Valori tipici di pressione termica nel gas diffuso

- Il gas interstellare diffuso è, in prima approssimazione, in equilibrio di pressione
 - Questo risultato osservativo può essere così interpretato:
 - I gradienti di pressione tendono a ridursi come conseguenza dei moti del gas, che possono avvenire fino a velocità del suono
 - I gradienti di temperatura sono più lenti a ridursi: fasi con temperature molto diverse possono coesistere in equilibrio di pressione
- I valori tipici di pressione possono essere molto più alti nelle regioni HII e nelle nubi molecolari più dense

Le regioni HII sono energizzate dai fotoni stellari Le nubi molecolari più dense sono autogravitanti

Stato di ionizzazione dei metalli nel gas interstellare

- Il calcolo dello stato di ionizzazione dei metalli è in principio abbastanza complesso
 - Ammettendo che ci sia equilibrio tra processi di ionizzazione e di ricombinazione bisogna scrivere un'equazione in cui si eguagliano i tassi di ionizzazione con quelli di ricombinazione
 - Tale equazione avrà una dipendenza dal campo di radiazione, per via dei processi di fotoionizazzione, e una dipendenza dai parametri fisici, in quanto i coefficienti di ricombinazione e ionizzazione collisionale dipendono dallo stato fisico del gas
- Nella pratica, però, nelle regioni HI si può predire in • maniera semplice lo stato di ionizazzione dominante
 - Trascurando la ionizzazione collisionale

Astronomia Osservativa C. ISM 2. Vladilo (2011)

Stato di ionizazzione dei metalli nelle regioni HI

		1 H	1
	Nelle regioni HI gas opaço a fotoni con hu > 13.6 eV	2 He	2
•	None region in gas opaco a rotom con nv > 15.0 c v		
	Matalli con potenziale di ionizzazione > 12.6 eV cono	4 Be	
	$-$ Metalli coli potenziale di follizzazione $\geq 15.0 \text{ eV}$ solio	5 B	
	prevalentemente neutri	6 C	1
		7 N	14
	• NI, OI,	8 U	1
		10 Ne	2
•	Fotoni stellari con $hv < 13.6$ penetrano le regioni HI	11 Na	-
		12 Mg	
	- Metalli con primo potenziale di ionizzazione < 13.6 eV	13 AI	
	sono fotoionizzati	14 Si	1
	solio lotolollizzati	15 P	10
	- Se il secondo potenziale di ionizzazione > 13.6 eV allora	16 S	10
		17 CI	12
	lo stato dominante è quello una volta ionizzato	18 Ar	15
	CH MAR SHE FAR AT	19 K	-
	• CII, MgII, SIII, FeII etc.	20 Ca	5
	La accomuzioni conformano la validità di questo	22 Ti	
•	Le osservazioni comermano la vandita di queste	23 V	2
	approssimazioni	24 Cr	e
	approssimuzioni	25 Mn	7
	– Esempi	26 Fe	7
	Loompi	27 Co	7
	• MgII/MgI \gg 1, FeII/FeI \gg 1, etc	28 Ni	7
		20 0	

	1	п
1 H	13.598	
2 He	24.587	54.410
3 Li	5.392	75.638
4 Be	9.322	18.21
5 B	8.298	25.154
6 C	11.260	24.38
7 N	14.534	29.601
80	13.618	35.110
9 F	17.422	34.970
10 Ne	21.564	40.962
11 Na	5.139	47.286
12 Mg	7.646	15.035
13 AI	5.986	18.828
14 Si	8.151	16.345
15 P	10.486	19.725
16 S	10.360	23.33
17 Cl	12.967	23.81
18 Ar	15.759	27.629
19 K	4.341	31.625
20 Ca	6.113	11.871
21 Sc	6.54	12.80
22 Ti	6.82	13.58
23 V	6.74	14.65
24 Cr	6.766	16.50
25 Mn	7.435	15.640
26 Fe	7.870	16.18
27 Co	7.86	17.06
28 Ni	7.635	18.168
29 Cu	7.726	20.292
30 Zn	9.394	17.964

Z Element -

Principi fisici del mezzo interstellare

- Il mezzo interstellare si trova generalmente lontano dall'equilibrio termodinamico
 - Non vale la distribuzione di Boltzmann della popolazione dei livelli energetici
 - Problema nella definizione della temperatura di eccitazione
 - Non vale la distribuzione di Saha degli stati di ionizzazione
 Problema nella definizione della temperatura di ionizzazione
 - Non vale la distribuzione di Planck
 Problema nella definizione della temperatura di radiazione

$$\frac{n_u}{n_l} = \frac{g_u}{g_l} e^{-\frac{\Delta E_{ul}}{kT}}$$

Astronomia Osservativa C, ISM 2, Vladilo (2011)

21

Perchè il mezzo interstellare non è in equilibrio termico

• L'equilibrio termodinamico richiede un bilancio dettagliato

Ogni processo e il suo processo inverso dovrebbero verificarsi con uguale frequenza

• Spesso questo non succede nel mezzo interstellare

Ad esempio l'eccitazione collisionale seguita da decadimento radiativo a causa della bassa densità del mezzo

Perchè il mezzo interstellare non è in equilibrio termico

- Il campo di radiazione stellare è lontano dall'equilibrio termico
 - − La distribuzione energetica ha un picco a ~2000 Å $\Rightarrow T_{colore} \sim 10^4 \ {\rm K}$
 - − La densità di energia è però molto bassa ~ 1 eV cm⁻³ \Rightarrow 3 K
- I flussi di energia tra stelle, ISM e mezzo intergalattico fanno sì che il sistema sia fuori dall'equilibrio

Distribuzione delle velocità

- Nonostante la mancanza di equilibrio termodinamico, l'energia cinetica delle particelle del gas interstellare si distribuisce abbastanza bene
 - Le collisioni elastiche sono abbastanza frequenti da termalizzare la distribuzione delle velocità
- Vale la distribuzione di Maxwell delle velocità
 - La temperatura cinetica è pertanto ben definita

$$f(v) \propto e^{-\left[\frac{v}{(2kT/m)}\right]^2}$$

La temperatura del mezzo interstellre

- La temperatura cinetica può deviare considerevolmente dalle temperature di eccitazione e di ionizzazione
 - Queste ultime non sono indicative, nella misura in cui non valgono le distribuzioni di Boltzmann, degli stati di eccitazione, e di Saha, dei livelli di ionizzazione
- In generale si usa la temperatura cinetica, che è ben definita, come indicatore della temperatura del gas
 - Grazie al fatto che generalmente vale la distribuzione maxwelliana delle velocità

Astronomia Osservativa C, ISM 2, Vladilo (2011)

25

Densità di energia nel mezzo interstellare locale

Termica	$u_{th} \approx 0.4 \text{ eV} \text{ cm}^{-3}$	Assumendo
$u_{th} = 3/2 p$		$p/k = 3000 \text{ K cm}^{-3}$
Idrodinamica	$u_{hydro} \approx 0.18 \text{ eV cm}^{-3}$	Assumendo $n_{\rm H}$ =1 cm ⁻³
$u_{hydro} = 1/2 \rho \langle v^2 \rangle$		$v_{\rm rms} = 5 \text{ km s}^{-1}$
Magnetica	$u_{magn} \approx 0.22 \text{ eV cm}^{-3}$	Assumendo $B = 3 \mu G$
$u_{magn} = B^2/8\pi$		
Campo di radiazione stellare	$u_* \approx 0.5 \text{ eV cm}^{-3}$	Debolmente accoppiata all'energia termica
Raggi cosmici	$u_{cr} \approx 0.8 \text{ eV cm}^{-3}$	Debolmente accoppiata all'energia idrodinamica
Radiazione di fondo cosmica	$u_{CBR} \approx 0.25 \text{ eV cm}^{-3}$	Sostanzialmente disaccoppiata dagli altri tipi di energia

Cenni sui processi di riscaldamento e raffreddamento nel Mezzo Interstellare

- Processi di riscaldamento del gas
 - Acquisizione di energia cinetica da parte di ioni, atomi e molecole
- Processi di raffreddamento del gas
 - Perdita di energia cinetica da parte di ioni, atomi e molecole
- Modelli in equilibrio termodinamico

Astronomia Osservativa C, ISM 2, Vladilo (2011)

Processi di riscaldamento del gas interstellare

- Generalmente dovuti a particelle con velocità superiori alla media termica, tipicamente elettroni
 - Tali particelle vengono termalizzate mediante interazioni elastiche Coulombiane con elettroni termici

• Possono essere così suddivisi:

- Processi stazionari
 - Avvengono su scala microscopica Interazioni in cui sono coinvolti particelle e fotoni
- Processi non stazionari
 - Avvengono su scala macroscopica Feedback di eventi stellari sul mezzo interstellare L'energia viene redistribuita alle particelle

Processi stazionari di riscaldamento del gas

- Processi microscopici
 - Emissione fotoelettrica dai grani di polvere
 - Ionizzazione ed emissione di un elettrone energetico
 - Ionizzazione da raggi cosmici
 - Fotoionizzazione da raggi UV e soft-X
 - Riscaldamento chimico

Astronomia Osservativa C, ISM 2, Vladilo (2011)

Processi stazionari di riscaldamento del gas

- Emissione fotoelettrica dai grani di polvere
 - La radiazione stellare UV rimuove elettroni dai grani di polvere
 - Tali elettroni mantengono una frazione considerevole dell'energia del fotone incidente
 È uno dei meccanismi di riscaldamento interstellare più efficienti
- Emissione fotoelettrica dai molecole organiche complesse
 - Per esempio dai Polyciclic Aromatic Hydrocarbons (PAHs)
 - Processo importante solo dove tali molecole sono abbondanti

Processi stazionari di riscaldamento del gas

- Altri processi microscopici (in ordine decrescente di importanza)
 - Ionizzazione ed emissione di un elettrone energetico
 - Ionizzazione da raggi cosmici p + HI → p + p + e
 - Fotoionizzazione da raggi UV e soft-X hv + Xⁱ \rightarrow Xⁱ⁺¹ + e
 - Riscaldamento chimico
 - Reazioni chimiche interstellari che rilasciano i propri prodotti di reazione con una certa energia cinetica
 - Formazione di molecole H₂ sulla superficie dei grani di polvere
 - La formazione è fortemente esoterma e parte dell'energia viene trasformata in energia cinetica della molecola che lascia il grano di polvere

Astronomia Osservativa C, ISM 2, Vladilo (2011)

Processi non stazionari di riscaldamento del gas

- Processi macroscopici
 - Supernove
 - L'interazione con il mezzo interstellare avviene in tre fasi
 - Fase di espansione libera, Fase adiabatica, Fase isoterma ("snowplough")
 - Venti di stelle calde
- Tali processi trasferiscono energia cinetica agli ioni, atomi e molecole interstellari mediante onde d'urto ("shocks") e turbolenza
 - Si tratta sostanzialmente di processi di ionizzazione collisionale seguita dalla termalizzazione dell'elettrone emesso
- Oltre a processi puramente idrodinamici, esistono anche processi magneto-idrodinamici
 - Ad esempio dissipazione viscosa di onde di Alfvén
 - Tali onde sono sostanzialmente oscillazioni delle linee di forza del campo magnetico accoppiate al gas, che è generalmente un buon conduttore nella misura in cui è ionizzato

Processi di raffreddamento del gas interstellare

- Eccitazione collisionale di atomi + emissione di un fotone
 - Principale processo di raffreddamento nel gas neutro o parzialmente ionizzato
 - Le collisioni tra <u>elettroni</u> e altre particelle sono la principale fonte di eccitazione collisionale
 - L'eccitazione collisionale causata da <u>atomi di idrogeno</u> può diventare importante quando la densità elettronica è bassa

Astronomia Osservativa C, ISM 2, Vladilo (2011)

33

Processi di raffreddamento del gas interstellare

- Condizioni affinchè i processi di raffreddamento siano efficienti
 - Collisioni frequenti
 - Densità abbastanza alta di particelle interagenti
 - Energia di eccitazione ≤ energia cinetica termica
 - Alta probabilità di eccitazione durante la collisione
 - Emissione del fotone prima della successiva collisione
 - Trasparenza del mezzo al fotone emesso
 - Gas otticamente sottile per la riga in emissione

Processi di raffreddamento del gas interstellare

- Eccitazione collisionale di atomi + emissione di un fotone
 - Alle alte temperature
 - Eccitazione di livelli elettronici di atomi/ioni
 - A T~10⁴ K principale agente di raffreddamento è la Ly α
 - Alle basse temperature
 - Eccitazione di livelli di struttura fina di atomi/ioni
 - Il principale agente di raffreddamento è la riga di struttura fine del CII a λ =157 μ m

Astronomia Osservativa C, ISM 2, Vladilo (2011)

Raffreddamento alle basse temperature

- Perchè CII è un agente di raffreddamento ottimale
 - Il carbonio è un elemento pesante abbondante
 - Il CII è lo stato di ionizzazione dominante del carbonio in nubi fredde
 - La separazione dei livelli di struttura fine $\Delta E/k=92$ K
 - Abbastanza grande da assorbire energia in ogni collisione
 - Abbastanza piccola da eccitarsi collisionalmente a $T\sim 50\text{--}100~\mathrm{K}$

