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E lo stupore nei tuoi occhi
salı́ dalle tue mani

che vuote intorno alle sue spalle,
si colmarono ai fianchi

della forma precisa
d’una vita recente,

di quel segreto che si svela
quando lievita il ventre.

Fabrizio De André
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1

Introduction

In the last two decades a self–consistent theoretical description of the Universe has
been established. It describes the Universe by means of a relatively small number
of parameters: Ωm, ΩΛ, w(z), Ωk, σ8, h, ns. This scenario relies on the assumption of
the existence of two components whose nature is still totally unknown. In fact the
last results by Planck (Planck Collaboration et al., 2013) confirm that ∼ 70% of the
overall mass–energy content is in the form of Dark Energy. This energy causes the
Universe to expand accelerating at the present time. A deep revision of physics
laws may be needed to explain the origin of the dark energy, making this issue
one of the most interesting in modern physics. Another ∼ 25% is in the form of
non baryonic Dark Matter (DM hereafter), that interacts gravitationally but does not
absorb or emit light.

Galaxy clusters are a source of information that can be used to shed light on
these issues. Clusters are the largest virialized objects in the Universe, a collection
of dark and baryonic matter gathered in galaxies or as a diffuse component. The
number and mass of galaxy clusters has been demonstrated to be a powerful tool to
constrain the cosmological parameters that describe our Universe (e.g. Allen et al.,
2011). A crucial aspect in the cosmological application of galaxy clusters concerns
the reliability of mass estimates. Mass is not a directly observable quantity but
can be inferred in several ways, e.g. by assuming the condition of equilibrium
of the intracluster plasma (e.g. Ettori et al., 2002a) or galaxies (e.g. Katgert et al.,
2004) within the cluster potential well, or by measuring the gravitational lensing
distortion of the images of background galaxies by the cluster gravitational field
(e.g. Hoekstra, 2003, 2013).
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These methods of mass measurement can only be applied to clusters for which
a substantial amount of high quality data is available (like, e.g., in the clusters
observed in the ongoing CLASH-VLT project, Postman et al., 2012; Biviano et al.,
2013). When these are not available, it is still possible to infer cluster mass from
other observed quantities, the so-called mass proxies, which are at the same time
relatively easy to measure and characterised by tight scaling relations with cluster
mass (e.g. Kravtsov and Borgani, 2012). The proxy that is considered in this Thesis
is the velocity dispersion of member galaxies. In fact, the potential well of the clus-
ter is the main driver of the orbital motion of the galaxies which, in the absence
of mutual interactions, can be treated as test particles in the gravitational potential
of the cluster. Therefore the kinematics of galaxies carries the information about
the mass content of the cluster. The use of velocity dispersion as a proxy for clus-
ter mass is particularly interesting in view of ongoing (BOSS, White et al., 2011)
and future (Euclid, see Laureijs et al., 2011) large field galaxy surveys, in which
thousands of clusters will be discovered, but each one with limited spectroscopic
information only. The relation between such proxy and the mass must be calibrated
and the systematic effects well understood. For this purpose numerical simulations
are a powerful tool, which is exploited in the work presented in this Thesis.

Along with the cluster mass estimates, the dynamics of member galaxies pro-
vides important information on the build–up of galaxy clusters. In the very early
Universe the cosmological inflation sets small initial density fluctuations resulting
from Gaussian quantum fluctuations in a scalar field. In the hierarchical scenario
of structure formation such fluctuations grow by gravitational instability. Struc-
tures form via merging of smaller systems, and the signature of the infall process
is imprinted in the structure and dynamics of these objects. The dynamics is, how-
ever, influenced also by other processes, e.g. dynamical friction or ram pressure.
In order to understand how clusters are assembled and how galaxies trace their
internal dynamics, these processes must be taken into account, and their effect well
understood.

In the late 90s, the mass density profile of galaxy clusters was found to be
of a universal parametric shape for all such objects, the so–called NFW profile
(Navarro et al., 1996). This universality might be due to a fundamental process still
to be understood. On the other hand, with the advent of numerical simulations
with increasingly higher resolution, such universality has been questioned, and
a new quantity has been proposed as candidate for being a universal profile: the
pseudo phase space density (Taylor and Navarro, 2001) (PPSD hereafter), although
some doubts on its universality have been also raised (Ludlow et al., 2011). A
direct comparison with real clusters might shed light on this issue, suggesting new
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directions for theoretical studies.
The aim of this Thesis is to understand how clusters can be used as tracers of

the past history of cosmic structure formation and which are the physical processes
which determine their internal structure and dynamics. This objective is pursued
by following three lines of attack, which combine the exploitation of both numer-
ical simulations and observational data: a) study of the influence of the baryonic
physics implemented in simulations and choice of the tracer of the gravitational
potential in the scaling relation linking the velocity dispersion of cluster member
galaxies and the cluster mass; b) derivation of the mass and velocity anisotropy
profiles of a real, observed cluster; c) study of the pseudo phase space density pro-
file of a real cluster and comparison with theoretical predictions. More in detail,
the Thesis is structured as follows:

Chapter 2 provides an overview on the formation of cosmic structures. After dis-
cussing the statistical tools used to study the evolution of the Universe, the
linear regime of the structure growth is presented. When this regime is not
applicable anymore, the approaches to study the mildly non linear and fully
non linear regimes are discussed. Numerical simulations are a powerful tool
for studying the non linear regime and an overview on the main aspects of
this kind of tool is presented in the final part of this chapter.

Chapter 3 presents the theoretical framework describing the dynamics of collapsed
structures made of collisionless matter and the mechanisms through which
equilibrium is established in such systems. A way to characterize the dynam-
ical state of collapsed halos is by means of the so–called pseudo phase–space
density. The properties of this quantity are still matter of discussion in the
scientific community, and a review of the literature relevant for this subject is
presented. The information carried by the internal dynamics of galaxy clus-
ters, presented in the first part of this chapter, is used to infer the mass content
of such systems. In particular, three methods are presented: the Dispersion–
Kurtosis, MAMPOSSt, and the Caustic techniques.

Chapter 4 presents an overview of observations of galaxy clusters. The first step
of an observational study consists in the detection of clusters. The main tech-
niques for the detection in optical bands are presented. Once clusters are
identified, it is possible to study the mass distribution of these objects. The
main techniques for this purpose are based on gravitational lensing studies,
on observations of the hot intra–cluster plasma through its X–ray emission or
through the Sunyaev–Zeldovich (e.g., Carlstrom et al., 2002) effect. The use of
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the kinematics of galaxy members is not discussed here as it is presented in
more detail in chapter 3, being the main topic of this Thesis. These techniques
are presented and compared to each other. When these techniques are not ap-
plicable, the use of proxies for the mass becomes a fundamental tool, and the
description of the most commonly used proxies for the mass are presented.
In the second part of this chapter, the properties of the population of cluster
galaxies are discussed, along with the environmental processes determining
its evolution.

Chapter 5 presents the results of a dynamical analysis of Abell 2142, a galaxy clus-
ter at z = 0.09. Different methods are applied to derive the mass profile of this
system by means of the information provided by the line–of–sight velocities
of member galaxies. The velocity anisotropy profiles are obtained through
the inversion of the Jeans equation, after assuming a mass profile obtained
by combining results from the kinematics and the results coming from weak
lensing and X-ray analyses. With these results it is possible to investigate
the pseudo phase space density of this system, comparing it with theoreti-
cal predictions. We find an excellent agreement between our estimate of the
PPSD profile and the theoretical relation, when using the sample made of
red galaxies. The sample made of blue galaxies does not provide an agree-
ment as good as the red sample’s one. This is consistent with the scenario
of blue galaxies being recently accreted and not having undergone violent re-
laxation yet. I discuss the possible reasons for the deviations from theoretical
relations, highlighting the importance of baryonic physics still lacking in the-
oretical studies. The results obtained in this chapter are presented in Munari
et al. (2013b).

Chapter 6 presents the results of an analysis of cosmological N-body and hydro-
dynamical simulations of galaxy clusters, aimed at calibrating the scaling re-
lation between the internal velocity dispersion of clusters and their mass. In
particular we have investigated the role of the baryonic physics implemented
in the simulations used for such calibration, and how the choice of the trac-
ers of the gravitational potential affects the scaling relation. In order to test
and quantify the impact of the baryonic physics we made use of four sets of
cosmological simulations: one DM-only simulation, one with non-radiative
gas, and another two with gas cooling, star formation and galactic ejecta trig-
gered by SN winds, one of the two also including the effect of AGN feedback.
We determined the relation between the 1D velocity dispersion σ1D and the
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virial mass M200 of clusters when using as tracers DM particles, subhalos, and
galaxies in cluster- and group-sized halos. This relation appears to be slightly
different, according to the tracer and the baryonic physics implemented. We
provide an interpretation of these differences, based on the role played by
dynamical processes taking place in clusters, namely dynamical friction and
tidal stripping. This study has been performed by considering the entire 6D
phase space. Observationally it is possible to access to only three dimensions
of the phase space, namely two for the position of a source in the plane of the
sky and one for the line–of–sight velocity. The results of this study show that
good knowledge of the σ1D − M200 relation in 6D phase space is fundamental
before one could apply this relation to observational samples applying the
corrections for the projection effects. The results obtained in this chapter are
presented in Munari et al. (2013a)

Chapter 7 is the conclusion chapter, where I summarize the results presented in
the Thesis, and discuss possible future directions of development.
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2

The formation of cosmic structures

The WMAP1 and Planck2 missions (Komatsu et al., 2011; Planck collaboration et al.,
2013), have shown a ∼ 400000 year young Universe. The cosmic microwave back-
ground appears on average homogeneous with small fluctuations of the order of
∆T/T ∼ 10−5. This picture reflects the distribution of matter of the primordial
Universe. The observed homogeneity and isotropy lead to the so–called Cosmologi-
cal Principle, stating that the Universe looks the same in all directions. This implies
that our location in the Universe is typical, not different in any fundamental way
from any other.

However, the Universe we observe nowadays at small scales is highly inhomo-
geneous. How did stars, galaxies and clusters of galaxies form starting from the
initial homogeneous conditions? The standard cosmological scenario describes the
evolution of the small initial density fluctuations, that are set by the cosmological
inflation occurred in the very early Universe, as a result of Gaussian quantum fluc-
tuations in a scalar field. If ρ(~x) is a density field on average homogeneous and
isotropic, small perturbations δρ(~x) create instabilities that can grow as time goes
by. We can build a toy model to estimate the time scales on which the dynamical
processes occur. Let us consider a fluid that undergoes only its own gravity, and
focus on a spherical region having radius λ. In this region let the density of the
fluid be slightly greater than the average density of the fluid ρ. Because of grav-
ity such fluctuation δρ/ρ grows. Pressure forces will oppose to the gravitational

1http://map.gsfc.nasa.gov/
2http://www.esa.int/Our_Activities/Space_Science/Planck
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collapse. Instability, and therefore collapse, will occur if the gravitational force per
mass unit Fg is greater than the pressure force per mass unit Fp, that is:

Fg ≃ GM

λ2
≃ Gρλ3

λ2
> Fp ≃ pλ2

ρλ3
≃ v2

s

λ
(2.1)

where vs is the sound velocity in the medium and p the pressure. The scale on
which the collapse will take place is roughly

λ > λJ =
vs

(Gρ)1/2
(2.2)

where λJ is called Jeans length. We can define the dynamical time

tdyn = (Gρ)−1/2 (2.3)

as the time a test particle takes to reach the center of an homogeneous mass dis-
tribution, subject to the gravitational force only. Equation 2.2 can be also read as
follows: the system is unstable on a scale λ if the dynamical time is smaller than
the time a sound wave takes to travel such a distance (ts ≃ λ/vs). This means that
pressure is not able to set off against gravitational collapse.

Despite its simplicity, this model gives a first qualitative idea of the collapse pro-
cess. A more detailed analysis is the topic of this chapter. The tools for studying the
fluctuations and the first phase of the collapse, the so–called linear regime, are pre-
sented. The limitations of the linear regime are shown as well as a brief overview
of the techniques to deal with the non–linear phase of the structure formation.

We address the reader to more comprehensive books for a detailed treatment
of the topics discussed in next sections Binney and Tremaine (1987, 2011); Mo et al.
(2010).

2.1 The Newtonian approximation

The overall Universe can be described by means of general relativity. In particular,
the Robertson – Walker metric provides us with the description of the space-time of
the Universe:

ds2 = (c dt)2 − a(t)2

[
dr2

1 − Kr2
+ r2(dθ2 + sin2θdϕ2)

]
(2.4)
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where K is the curvature parameter, a(t) is the expansion factor and (r, θ, φ) are the
spherical coordinates. The time dependence of the spatial part of the metric has
been factorized in the latter term.

The Birkhoff theorem states that spherically symmetric gravitational field in an
empty space is static and described by the Schwarzschild metric, that is the metric
generated by a mass point in the empty space.

ds2 =
(

1 − r0

r

)
(c dt)2 −


 dr2

1 − r2

r2
0

+ r2(dθ2 + sin2θdϕ2)


 (2.5)

with r0 = 2GM/c2. Let us consider a spheric homogeneous mass–energy distri-
bution at the center of an empty cavity. Even if such distribution is not static, the
metric in the empty region will be static. Therefore, provided that the spherical
symmetry is maintained, the external and the internal regions do not interact. Let
the internal distribution be a sphere with mass m and radius l. If l is such that
Gm
lc2 ≪ 1 then the metric will tend to the Minkowski metric, and if the velocities are
much smaller than c it is possible to use the Newtonian mechanics.

Since M ∼ ρl3, the Newtonian approximation holds on a scale l ≪ c · (Gρ)−1/2.
From the first Friedmann’s equation we obtain (Gρ)−1/2 ∼ H, where H = ȧ/a
is the Hubble parameter, hence the above mentioned scale is l ≪ c

H ≃ RH. This
means that inside the horizon the Newtonian approximation holds.

The Birkhoff theorem is still valid if the empty region is substituted with a
mass–density distribution having a smaller density than the inner sphere and the
background.

2.2 The statistics of the density field

Let ρ(~x) be the density field of the Universe and ρ its mean density. The density
contrast is defined as follows:

δ(~x) =
ρ(~x)− ρ

ρ
(2.6)

The density contrast can be recast in the following way:

δ(~x) =
V

(2π)3

∫
δ̂~kei~k·~xd3k (2.7)
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where δ̂~k are the Fourier coefficients and V is the volume within which the Universe
can be considered periodic. Changing such volume results in different Fourier
coefficients, hence a different realization of the Universe. Therefore a cosmological
model can predict only statistical properties of the fields. Such properties must
be thought as the probability of having a particular realization of the Universe
given the cosmological model. A cosmological model therefore provides us with
an ensemble of models, at odds with the unique realization that can be observed in
reality. The Ergodic Principle allows to overcome this issue, as it states that the mean
over the ensembles translates into a spatial mean on portions of Universe.

2.2.1 The power spectrum

Although the mean value of δ(~x) is null, so is not the variance:

σ2 ≡ 〈δ2〉 = ∑
~k

〈|δ~k|
2〉 = 1

V ∑
~k

δ2
~k

(2.8)

where the mean is performed on an ensemble of realizations. Taking the limit V →
∞ and assuming the density field to be statistically homogeneous and isotropic

(in this way there is no dependence on the direction of ~k but only on its module

k = |~k|), we obtain the following expression:

σ2 ≡ 〈δ2〉 = 1

V ∑
~k

δ2
~k
→ 1

2π2

∫ ∞

0
P(k)k2dk (2.9)

where, for the sake of simplicity, we define P(k) = δ2
k = |δk|2. The quantity P(k) is

called power spectrum. It is worth noting that the variance does not have a spatial
dependence, therefore σ2 gives information only on the amplitude of perturbations.

The power spectrum is commonly parametrized with a power law:

P(k) = Akn (2.10)

where n is called spectral index. The following conditions must be satisfied so as the
integral of equation 2.9 converges:

n > −3 for k → 0 (2.11a)

n < −3 for k → ∞ (2.11b)
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2.2.2 Filtering scales

The variance as defined in the previous section is not an observable quantity. The
scale R on which the measurement is performed must be specified. The fluctuation
on such scale is

δR(~x) = δM(~x) =
∫

δ(~y)WR(|~x −~y|)d3y (2.12)

where W is a window function that depends on the shape of the considered volume.
The variance then becomes

σ2
R = σ2

M = 〈δ2
R〉 =

1

2π2

∫
k2P(k)Ŵ2

R(k)dk (2.13)

where ŴR(k) is the Fourier transform of the window function. For dimensional
reasons the following equivalence holds: WR(k) = W(kR). In case of n > −3,
substituting the expression for the power spectrum P(k) (equation (2.10)) in this
equation returns a variance that is a decreasing function of radius. This means
that the power of the fluctuations is greater on small scales. The latter therefore
correspond to the first structures to become non linear. Small objects are the first
to form, and successively the bigger ones form. This is the so-called hierarchical
scenario.

2.3 Linear evolution of the density field

In this section we shall see how initially small perturbations of the density field
evolve. As long as the perturbations are small (δ < 1), their evolution can be
studied in the linear approximation. The equations describing a self–gravitating
fluid are:

∂ρ

∂t
+ ~∇(ρ~v) = 0 Continuity Equation (2.14a)

∂~v

∂t
+ (~v · ~∇)~v = −

~∇p

ρ
− ~∇φ Euler Equation (2.14b)

∇2φ = 4πGρ Poisson Equation (2.14c)

where p is the pressure, φ the gravitational potential and ρ the mass density. The
continuity equation describes the conservation of mass, the Euler equation provides
the relation between the acceleration of a fluid element and the forces (gravitational
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and pressure) causing it and finally the Poisson equation specifies the Newtonian
nature of the gravitational force. These equations can be recast in comoving coor-
dinates, Fourier transformed and linearised, providing the following equation that
describes the evolution of the density contrast of perturbations in an expanding
background.

¨̂δ~k(t) + 2H ˙̂δ~k(t) +

(
v2

s k2

a2
− 4πGρ

)
δ̂~k(t) = 0 (2.15)

with v2
s = ∂P/∂ρ and δ̂~k are the Fourier coefficients.

DM is the dominant component in mass in the Universe. The dynamics of the
collapse of density perturbations and the following structure formation is therefore
led by the behaviour of such component, which is non–collisional. If the pressure
term in equation (2.15) is neglected we obtain the following relation:

¨̂δ~k(t) + 2H ˙̂δ~k(t)− 4πGρδ̂~k(t) = 0 (2.16)

This equation shows an important property of the perturbation theory in linear
regime: different Fourier modes evolve independently of one another. The cen-
tral limit theorem states that an infinite number of independent modes generates a
Gaussian field. Initially independent modes that evolve decoupled means that the
perturbations keep being Gaussian.

It is possible to demonstrate that the solution to eq. (2.16) is made of a growing
mode D+ and a decaying mode D−: δ̂~k = A~k

D+(t) + B~kD−(t). The former leads to an
increase in the density contrast and consequently to denser and denser objects. For
a collisionless fluid in a Universe with Ωm < 1 and ΩDE = 1 − Ωm like the ΛCDM
one, the expression for the growing mode of perturbations is given by:

D+(z) = E(z)G(z) (2.17)

with

E(z) =
H(z)

H0
= [Ω0m(1 + z)3 + Ω0k(1 + z)2 + ΩΛ]

1/2 (2.18)

G(z) =
5

2
Ω0m

∫ +∞

z

1 + z′

E(z′)3
dz′ (2.19)

Note that this last equation does not hold for a dark energy model with equation
of state w 6= −1. In Figure 2.1 the growth factor as a function of redshift for
different cosmologies is shown.
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0.1

1

0 1 2 3 4 5 6 7 8 9 10

D
(z
)

Redshift

ΩDE = 0.72; Ωm = 0.28; wDE = -1
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Figure 2.1: Different curves represent the growth factor D+(z) normalized at 1 for
z = 0 for three different set of cosmological parameters, as indicated in the legend.
[After Sartoris (2012)].

A matter dominated Universe can be described with an Einstein – de Sitter
model, in which Ωm = 1 and ΩΛ = 0. In this case the following relations hold:

a(t) ∼ t2/3 ; 4πGρ =
2

3t2
; H =

2

3t
(2.20)

and the growing mode becomes

D+(t) ∼ t2/3 ∼ a (2.21)

This means that the density contrast increases, independently of the mode, at the
same rate of the expansion of the Universe.

In more qualitative, but also more intuitive, way this result can be understood
by considering the time scales on which the collapse process takes place. From the
first Friedmann’s equation we have

H2 =
8πG

3
ρ ∼ t−2 (2.22)
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The characteristic time of the expansion, texp, will therefore be

texp ∼ (Gρ)−1/2 (2.23)

where ρ is the mean density of the Universe. In the linear regime the density of the
perturbation is very close to the mean density of the Universe, therefore

ρ ≃ ρ =⇒ tdyn ≃ texp (2.24)

that means that the rate of growth of the perturbation is similar to the one of the
expansion of the Universe.

As seen in Sect. 2.3, different modes of the perturbation field evolve indepen-
dently one another, and the evolution is therefore a linear function of the initial
conditions. The growing mode is expected to dominate after some time, and the
resulting power spectrum at redshift z reads:

P(k, z) = T2(k)D2(z)Pin(k) (2.25)

where D(z) is given by eq. (2.17), Pin(k) is the initial power spectrum described by
P(k) = Akn, and T(k) is the transfer function (Eisenstein and Hu, 1998). Such func-
tion bears the imprint of evolutionary effects (Meszaros effect, Silk damping, baryonic
acoustic oscillations, neutrino free streaming) that alter the original linear form of the
initial power spectrum. In Figure 2.2 the transfer function for different models is
shown.

2.4 The Zel’dovich approximation

In 1970, Zel’dovich developed a theory (Zel’dovich, 1970) to follow the formation
of DM structures that strictly holds in a Universe dominated by Hot Dark Matter.
Nevertheless, as long as we consider the phase in which the linear approximation
holds, such theory can still be applied and gives us information on the overall
distribution of the perturbations and the objects that will then form. This method
has a Lagrangian approach, following the fluid elements along their trajectories.

Let d3q be the initial volume of the fluid element (see Figure 2.3) and ~q its
Lagrangian coordinate, that coincides with the Eulerian coordinate. This fluid ele-
ment has density ρ0(~q) and is moving (dashed line in the figure) changing shape,
but still conserving its mass. Let the final volume and density be d3r and ρ(~r, t),
respectively. Without any perturbation the position vector would be~r(t) = a(t) ·~x,
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Figure 2.2: A plot of transfer functions for various models. A number of possible
matter contents are illustrated: pure baryons, pure CDM, pure HDM, M(ixed)DM
(30% HDM, 70% CDM). [Modified from Peacock (1999)].

Figure 2.3: Lagrangian scheme of the Zel’dovich approximation.
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with ~x being the comoving coordinate. Because of the perturbations, the position
vector takes the following form:

~r(~q, t) = a(t) ·~x(~q, t) = a(t)[~q + ~S(~q, t)] (2.26)

The Zel’dovich theory is based on the following ansaz: for small displacements, the

displacement vector ~S is factorizable in a term depending only on time and in one
depending only on the position ~q.

~S(~q, t) = g(t) · ~p(~q) (2.27)

By imposing the conservation of mass, we obtain the following equation:

ρ(~x, t) =
ρb

det
(

δij + g(t)
∂pj

∂qi

) (2.28)

where ρb = ρ/a3 is the background density. The density contrast in the Lagrangian
theory reads as follows:

δ(~x, t) =
ρ(~x, t)

ρb
− 1 ≃

[
1 − g(t)

∂pj

∂qi

]
− 1 = −g(t)~∇q~p (2.29)

while in Eulerian theory is:

δ(~x, t) = D(t)δi(~x) = D(t)∑
~k

δ̂~k,i
exp[i~k · (~q + g(ti)~p(~q))] = D(t)∑

~k

δ̂~k,i
exp[i~k ·~q]

(2.30)
By imposing that the evolution obtained with the Lagrangian and Eulerian descrip-
tions must coincide, the following relations are obtained:

{
g(t) ∝ D(t)

~∇q~p ∝ δ(~q)
(2.31)

and the displacement vector becomes

~p(~q) =
D(t)

g(t) ∑
~k

i~k

k2
δ̂~kei~k·~q ≡ −~∇Φ0 (2.32)

It is possible to demonstrate that Φ0 is proportional to the gravitational potential.
By substituting this relation in (2.29) we obtain the Zel’dovich relation:

δ(~x, t) = D(t)∇2Φ0(~q) (2.33)
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The position vectors ~q and ~x are linked via the Zel’dovich map

~x(~q, t) = ~q + g(t)~p(~q) = ~q − D(t)~∇φ0 (2.34)

Deriving such relation we can compute the velocity at the time t0:

~v0 = a(t0)Ḋ(t0)~∇Φ0 (2.35)

that, substituted in equation (2.34) returns

~x(~q, t) = ~q + D(t)
~v0

a(t0)Ḋ(t0)
= ~q + ~cost · D(t) (2.36)

that resembles the equation of the linear motion ~x = ~q + ~v0 · t. The Zel’dovich
approximation consists in giving to a fluid element an acceleration proportional to
the gradient of the potential in that position. The fluid element will move with
linear motion with time variable D(t), instead of t, because the background is
expanding.

From this ”pictorial” description it is easy to understand the limit of such ap-
proximation. The fluid elements feel the gravity only at the beginning, in fact the
acceleration is proportional to Φ0 and not to Φ(t). Therefore two elements instead
of hitting one another, they pass through each other. This phenomenon is called
shell crossing. When this happens the Zel’dovich map (equation (2.34)) is no longer
univocal and the approximation is not applicable anymore.

A further refinement (Coles et al., 1993) in the theory consists in setting Fourier
amplitudes of the density field equal to zero for all wavenumbers greater than knl,
where knl marks the transition to the nonlinear regime. In fact, as we have seen,
the Zel’dovich approximation works well at recovering the large scale structure,
but it does not work on small scales where the highly non linear effects occur.
This is the so–called Truncated Zel’dovich Approximation. A comparison between
an exact N–body solution and the solution provided by both the Zel’dovich (ZA)
and the truncated Zel’dovich (TZA) approximations starting from the same initial
conditions is shown in Figure 2.4. It is possible to notice that the rough structure is
recovered with the ZA, and even better with the TZE. In both cases, it is possible to
recover the position of the formation of structures, but not their internal structure,
as this is due to the highly non linear effects.

The theory developed by Zel’dovich allows to understand the first stages of
structure formation. The matrix in equation (2.28) is real and symmetric, because
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Figure 2.4: Structures simulated starting from the same initial comditions, using a
PM algorithm (see Sect. 2.7.2) (top left panel), the Zel’dovich approximation (ZA -
bottom left panel) and the truncated Zel’dovich approximation (TZA - top right panel).
[Courtesy S. Borgani].

~p(~q) is the gradient of a scalar quantity. It is then possible to find a reference
frame in which the matrix is diagonal. Let −λ1(~q),−λ2(~q),−λ3(~q) be the three
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eigenvalues, such that λ1 ≥ λ2 ≥ λ3:

ρ(~x, t) =
ρb(t)

[1 − D(t)λ1(~q)] · [1 − D(t)λ2(~q)] · [1 − D(t)λ3(~q)]
(2.37)

Assume that at an initial moment D(t)λi ≪ 1, ∀i. As time goes by D(t) grows,

and there will be a moment in which D(t) = λ−1
1 . The density field diverges, and

the collapse happens in one direction, the one of the eigenvector corresponding to
the eigenvalue λ1. These sheet–like structures are called pancakes, and are the first
non–linear structures to be formed. If the eigenvalues are such that λ1 = λ2 the
collapse takes place in two perpendicular directions and the resulting structure is
called filament. Finally if the three eigenvalues are equal the collapse takes place in
three dimension, and a point–like structure is formed.

When the collapse takes place, regions where the density diverges are formed.
These regions are called caustics. But because of the shell–crossing issue, particles
do not gather forming high density structures. The Zel’dovich theory is therefore
able to reproduce the large wavelength structures, but is not able to catch the high
frequency structures. This is the reason why it does not work properly in a CDM
scenario, where the first structures that form are the small ones. Nevertheless,
provided that one stops at the non linear regime, it allows to describe the general
behaviour of the structure formation, identifying and locating the regions where
matter is collapsing and, later on, clusters of galaxies will form.

2.5 The spherical collapse

So far we have dealt with small perturbations of the density field, for which the
linear approximation could be applied. Such approximation allows to locate the
high density regions where the cosmic structures nowadays we observe are going
to form. As time goes by, the fluctuations grow in amplitude, with density con-
trasts that become much bigger than δ ≃ 1. The linear approximation is no longer
applicable and a more detailed analysis is required. An analytical approach is pos-
sible only for very simple and idealised systems, as first introduced by Gunn and
Gott (1972). They described the assembly of the Coma cluster as bound shells of
matter accreting onto a collapsed object.

For more complex objects, like the real cosmic structures we want to describe,
we need to directly integrate the equations of motions of the DM fluid particles.
This approach will be described in Sect. 2.7, where numerical simulations are
described.
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In this section we describe the collapse of a system that, although very idealised,
provides us with information about the behaviour we expect too see in a real, more
complex collapsed system, with high density contrast.

Consider a spheric perturbation of an initial density field, having constant den-
sity and a positive, although small, amplitude. Let ti be this initial moment in a
matter dominated Universe. The perturbation is expanding along with the Uni-
verse, therefore at the edges the peculiar velocity ui will be null. Given the sym-
metry of the system, such fluctuation of the density field can be treated as a stand–
alone Universe, that evolves according to its own cosmological model. A density
parameter of the perturbation can be introduced:

Ωp(ti) =
ρ(ti)(1 + δ(ti))

ρcr(ti)
= Ω(ti)(1 + δ(ti)) (2.38)

where the subscript p denotes a quantity referred to the perturbation, and ρcr =
3H2(z)/8πG is the critical density. For a structure to form it is necessary that the
perturbation detaches from the Hubble flow and collapses. This means that the
perturbation must behave as a closed Universe:

Ωp(ti) > 1 (2.39)

Recalling the definition of the density parameter

Ω(z) =
ρ(z)

ρcr(z)
=

ρ(z)
3H2(z)

8πG

=
Ω0(1 + z)

(1 − Ω0) + Ω0(1 + z)
(2.40)

where Ω0 is the present value of the density contrast, the condition Ωp(ti) > 1
translates in a condition on the initial value of the density contrast. If such condi-
tion is satisfied, the perturbation grows as a separate Universe, reaching the maxi-
mum of the expansion at the time tm and then collapses. The expansion is described
by the Friedmann equation

(
ȧ

ai

)2

= H2
i

[
Ωp(ti)

ai

a
+ (1 − Ωp(ti))

]
(2.41)

It is possible to demonstrate that for a closed Universe the following relation holds

tm =

(
3π

32Gρp(tm)

)1/2

(2.42)
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where ρp(tm) is the density of the perturbation at the moment of maximum expan-
sion, and it can be derived by imposing ȧ(tm) = 0. This moment is also the moment
at which the perturbation detaches from the Hubble flow. From this moment the
background keeps expanding while the perturbation collapses. Its final fate is not
becoming a singularity. In a high density environment small anisotropies form
pressure gradients and shocks. The gravitational energy is converted in thermal
energy that heats the gas. If we consider a DM only system, instead of the pres-
sure, not present since DM is non–collisional, the system is supported by velocity
dispersion. The system reaches an equilibrium configuration, with a dimension
Rvir and mass M described by the virial theorem (see Sect. 3.4):

Evir =
U

2
= −1

2

GM2

Rvir
(2.43)

where U is the potential energy of the system. In order to obtain an estimate of the
overdensity of the system at the virialization, let us impose that the system does
not lose neither mass due to shocks nor energy because of radiation. The mass and
the energy the perturbation had at the time tm are equal at the time tvir. From this
we obtain the following relation:

Rvir =
Rm

2
(2.44)

During the collapse of the perturbation the Universe has kept expanding, its den-
sity being ρ ≃ a−3 ≃ t−2. The density contrast at the virialization therefore is

δ(tvir) =
ρp(tvir)

ρ(tvir)
=

23ρp(tm)

ρ(tm)
(

tvir
tm

)−2
≃ 178 (2.45)

A generalization of this relation has been derived in Bryan and Norman (1998),
still in an idealised case of a spherically symmetric DM only system:

δ(tvir) = 18π2 + 82x − 39x2 (2.46)

where x = Ωm(tvir)− 1. At z = 0 it is δ(tvir) ≃ 100, reaching asymptotically the
value 178 for high redshifts.

It is worth noting that the density contrast predicted by the linear theory is

δ(tvir) = δ(tm)

(
tvir

tm

)2/3

= 1.69 (2.47)
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where δ(tm) has been extrapolated according to the linear theory and has a
value ≃ 1. It appears clear that as soon as the density contrast is comparable to the
unity the linear theory is no longer applicable.

In Figure 2.5 the critical threshold for collapse and the virial density of collapsed
objects as a function of the matter density parameter are shown.

Figure 2.5: Upper panel: critical threshold for collapse, δc, as a function of the
matter density parameter Ω. Lower panel: virial density of collapsed objects in
units of critical density. [After Eke et al. (1996)].



Emiliano Munari 23

2.6 The mass function

The scenario so far painted consists of a Universe made of (cold) DM particles that
gather together in a hierarchical fashion, giving rise to cosmological structures.
This picture, although it is a simplification of the real Universe as it is lacking the
baryonic physics, is able to provide us with an estimate of the number of cosmolog-
ical objects of a given mass at a given redshift, an information that can be compared
with observation, allowing us to test the theoretical framework. In fact it is possible
to derive a relation that describes the number of DM halos of a given mass present
in the Universe at a certain time. This is the so-called mass function. The number of
such halos strongly depends on the history of the Universe, in particular on the rate
of the assembly of DM structures. Therefore the mass function is strongly related
to the cosmological parameters describing the evolution of the Universe.

We now derive the analytical expression for the mass function using the ap-
proach adopted by Press and Schechter (1974) (PS hereafter). The number N of
objects per unit volume with mass between M and M + dM is dN = n(M)dM,
where n(M) is the mass function. In the PS approach, the fraction of matter that
will form objects with mass at least M is assumed to be given by the portion of
the initial density field, smoothed on the mass scale M, lying at an overdensity
exceeding a given critical threshold value, δc. If the density field is assumed to be
Gaussian, the probability that at some point the linearly evolved smoothed field δM

exceeds the critical density contrast δc is given by:

p>δc
(M, z) =

1√
2πσM(z)

∫ ∞

δc

exp

(
− δ2

M

2σM(z)2

)
dδM (2.48)

The time dependence enters through the variance σM at the mass scale M linearly
extrapolated at redshift z.

Notice that if we take the limit M → 0 (this means considering objects of any
mass) then the probability p>δc

(M, z) should be 1. The integral of eq. 2.48 returns
instead the value 1/2. By the PS approach, in fact, a point with δM < δc, for a
given filtering mass scale M has zero probability to reach δM′ > δc for some larger
filtering scale M′ > M. This means that the PS approach neglects the possibility
for that point to end up in a collapsed halo of larger mass. A proper derivation
of the mass function accounting for the missing factor 2 is provided in Bond et al.
(1991).

Since Eq. 2.48 provides the fraction of volume in objects of a given mass, the
number density of such objects will be obtained by dividing it by the Lagrangian



24 Emiliano Munari

volume occupied by each object. Taking into account also the missing factor 2, the
PS mass function is as follows:

dn(M, z)

dM
=

2

VM

∂p>δc
(M, z)

∂M
=

=

√
2

π

ρ̄

M2

δc

σM(z)

∣∣∣∣
d log σM(z)

d log M

∣∣∣∣ exp

(
− δ2

c

2σM(z)2

)
(2.49)

From this expression it is possible to understand how the mass function can be
used to constrain cosmological parameters. If we restrict to massive objects only,
the mass function is dominated by the exponential term. This means that it is expo-
nentially sensitive to the cosmological parameters. The latter (Ωm, ΩΛ, w(z), Ωk, σ8, h, ns)
enter the mass function through σM (eq. (2.9)), which depends on the power spec-
trum (eq. (2.25)), and on the linear perturbation growth factor (eq. (2.17)). Fig. 2.6
shows to plots illustrating the sensitivity of the cluster mass function to redshift
and cosmological models.

In the potential wells of the halos, galaxies and clusters of galaxies form. Count-
ing such objects provides tight constraints on cosmological parameters.

With the advent of N-body numerical simulations, that cover a wide dynamical
range, more precise expressions for the mass function have been computed but still
preserving the meaning and the power in constraining cosmological parameters.
Of course the mass function strongly depends on how the cluster mass is defined
in simulations. The most commonly used definition is the spherical overdensity
one. The mass is considered to be the amount of matter within a spherical region
of a virialized halo having a mean density ∆c times the critical density, as described
in Sect. 2.5. Sheth and Tormen (1999) calibrated the mass function using the sim-
ulations and Sheth et al. (2001) generalized the expression of the Press–Schechter
mass function by considering a more physically realistic ellipsoidal collapse model.

A different approach is adopted in Jenkins et al. (2001), where a functional form
of the mass function is obtained as the best fit to the results of a combination of
different simulations.

Recently, many authors have focused on the redshift evolution (see,e.g. Reed
et al., 2003, 2007; Lukić et al., 2007; Cohn and White, 2008; Tinker et al., 2008) and
the impact of baryonic physics (Stanek et al., 2009; Cui et al., 2012).

Since mass is not a directly observable quantity, the mass of galaxy clusters
must be inferred from the observations of other quantities. A statistical method,
that is discussed in Chapter 6, for obtaining the mass distribution of a sample
of clusters is the application of a scaling relation between the velocity dispersion
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Figure 2.6: The sensitivity of the cluster mass function to redshift and cosmological
models. Left panel: dots with errorbars identify the halo mass function at different
redshift as obtained from the Millennium Run (Springel et al., 2005b), while the
black solid and blue dotted lines are the predictions by Henry (2004) and Press and
Schechter (1974). Right panel: evolution of the cluster mass function for M > 5 ×
1014h−1M⊙ for three cosmologies, as indicated in the plot. [After Borgani (2008)].

of galaxies in clusters and the masses of clusters themselves. The scatter in this
relation leads to a systematic error in the mass function. Since the mass function is
steep, an observable proxy for cluster mass Mobs is biased high compared with the
true mass M since it is more likely that one of the numerous low mass objects is up–
scattered to higher values of mass than it is that a rare high mass object is down–
scattered to lower values of mass. For the case of a lognormal mass–observable
relation with rms σln M that is small compared with the scale over which the local
slope of the mass function changes, the distribution of masses must be corrected
by applying the following relation between the true mass and its observational
estimate (Mortonson et al., 2011):

ln M = ln Mobs +
1

2
γσ2

ln M (2.50)

where dn/d ln M ∝ Mγ. This shift in the mass function due to the scatter in the
scaling relation is the so–called Eddington bias.
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2.7 Numerical simulations

In the Sect. 2.5 we have seen that an analytical solution for the collapse of DM struc-
tures in the non linear regime is not possible for the general case. Also, although
useful to capture some aspects of the general picture of structure formation, this
kind of approach is way too simple to understand in detail the complex process of
build-up of cosmic structures such as galaxy clusters.

Nowadays, a widely used approach consists in the use of numerical simula-
tions, that have constituted a powerful tool since the late 70s. The idea beneath
this technique is to discretize and sample the DM phase space by a number N
of particles, the so called ”bodies”. These particles are initially distributed so as
to reproduce the initial density field with the statistical properties correct for the
assumed cosmological model. These particles feel the mutual gravitational force,
and the equations of motion are integrated to provide the trajectories. In this way
it is possible to follow the evolution of cosmic structures through the non linear
regime starting from the initial conditions set to reproduce the early stage of linear
evolution. A further step consists in the inclusion of the baryonic physics. Baryons
must in fact interact both gravitationally, with themselves and with DM particles,
and hydrodynamically. There exist two approaches to deal with hydrodynamics:
the Lagrangian and the Eulerian approach.

In the following section the main aspects of the DM only simulations and the
techniques used to simulate the baryonic physics are briefly summarized.

2.7.1 Initial conditions

The first fundamental step in setting up a simulation is the generation of initial
conditions, that must reflect the statistical properties of the initial conditions of
the Universe, described at the beginning of Sect. 2. At this epoch the density
fluctuations are small and the usual assumption is that such initial density field is
random Gaussian, described by the power spectrum P(k) (see Sect. 2.2.1). In order
to reproduce such field, particles are located on a grid and are slightly moved so
as the fluctuations in this way generated have the correct power spectrum.

Two random numbers, φ and A, are generated, both ∈ (0, 1], for each point of
the k–space. The Fourier coefficients of the contrast density field then becomes:

δ̂k =
√
−2P(k) ln(A)ei2πφ (2.51)
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If ~q are the particle coordinates in the real space, the potential reads:

Φ(~q) = ∑
k

δ̂k

k2
ei~q~k (2.52)

Initial position and velocity are assigned to particles via a displacement in the
phase space according to the Zel’dovich approximation (see Sect. 2.4):

~x = ~q − D+(z)~∇φ(~q) (2.53)

~v = Ḋ+(z)~∇φ(~q) (2.54)

2.7.2 N–body methods

There exist several approaches to compute the trajectories of the particles due to
the mutual gravitational attraction. The first one is the simplest and consists in the
direct computation of the gravitational force acting on each particle due to all the
other particles:

~Fij =
Gmimj(~xi −~xj)

(|~xi −~xj|2 + ǫ2)3/2
(2.55)

where G is the gravitational constant, mi and mj are the particle masses, ~xi and
~xj are the particle positions and ǫ is the softening parameter . This is the so called
Particle–Particle (PP) method. By this approach, particles do not have a dimension,
therefore it might happen that particles get arbitrarily close to one another, causing
the force to artificially diverge. To avoid this, the softening parameter is introduced,
limiting the force in case of particles getting too close. This method is very accurate,
as it is the direct computation of the equations of motions. The flip side is the high
computational cost. The number of computations scales like N(N − 1)/2, where N
is the total number of particles. Nowadays this method is no longer applied to the
entire cosmological box, but is still in use in the very high density regions, where
a high precision is required.

The Particle–Mesh (PM) technique allows to reduce the computational cost. The
idea beneath this method is the evaluation of the gravitational potential on a grid
to compute the gravitational interactions. More precisely, the density field is evalu-
ated in the mesh points, then the Poisson equation is solved in the Fourier space. In
Fourier space also the potential is computed by means of the Green’s theorem. Fi-
nally, the forces acting on the particles are obtained by interpolating the derivatives
of the potential at the particle positions. The use of a regular grid with periodic
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boundary conditions allows to easily solve the equations in the Fourier space, mak-
ing the computation much faster than for the PP case. In fact the computational
cost scales like N log N, where N is the number of grid points. In this case the flip
side is the low resolution of this technique. To overcome such problem, an hybrid
method has been developed, the so called Particle–Particle–Particle–Mesh, or, briefly,
P3M. This approach makes use of the PP algorithm for the computation of short
range interactions, and the PM for the long distance ones. A further improvement
is the use of Adaptive Mesh Refinements (AMR) codes, where the grid step is set to
different values according to the local density, in order to have higher resolution in
the high density regions, and save computational cost in the low density regions.

The last technique we want to present here is the Tree algorithm. It performs
a hierarchical subdivision that resembles the structure of a tree. The idea is to
treat distant clumps of particles as a single massive particle. In order to locate
these clumps of particles, the space is partitioned in cubic cells. This partitioning is
carried out until each cell contains either 1 or 0 particles. The full mass distribution
is the root and each further subdivision locates a node. The cells containing one
paricle are called leaves. Each cell, small or large, is characterized by the enclosed
total mass and the center-of-mass of the particles. To compute the force acting on a
particle, its distance D from a node is computed. The cell is considered as a single
particle if l/D < θ, l being the length of the cell, and θ is an adjustable parameter
usually taken ∼ 1. If this condition is not satisfied, the condition is checked on
the smaller node. This proceeds iteratively until a leaf is reached. In this way the
effective number of particles used to perform the computation is decreased only
where it is convenient. Although by this method the force is computed faster,
at each timestep the tree must be stored, making this method the most memory
consuming.

2.7.3 Hydrodynamical techniques

The methods so far discussed are suitable for dealing with the N-body issue. How-
ever, although DM is the most abundant component in mass, most of the observable
phenomena comes from the baryonic matter. Such component must be reproduced
in simulations taking into account thermodynamic and radiative processes, star for-
mation, feedback from supernovae and active galactic nuclei (AGN hereafter) and
chemical enrichment. A fluidynamic approach allows to deal with all the above
mentioned processes. The two main approaches are the grid-based Eulerian and
the gridless Lagrangian methods.

Eulerian schemes: by this kind of approach, the variations of physical quantities
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(like velocity, pressure, internal energy, etc...) of the fluid are followed. Such
properties of the fluid are evaluated on the cells of a grid. The latter can either
be fixed or adaptive (Adaptive Mesh Refinement (AMR) schemes), but in both
cases the main problem is the limited spatial resolution. Even though with
the AMR schemes such issue is not critical, the Eulerian scheme is still not as
efficient as an SPH code (see below) as far as the resolution is concerned. On
the other hand, the main advantage is the intrinsic skill of dealing with shocks
without adding any artificial term, as needed in the Lagrangian schemes.

Lagrangian schemes: in this case the fluid is discretized, and each fluid element,
to which all the physical quantities are associated, is followed along its evo-
lution through time. The main advantage lies in the high spatial resolution
achievable. Furthermore, it is much easier to implement with respect to a
grid based method, as it resembles the logic by which the DM is treated in
the N-body codes. The flip side resides in the treatment of shocks, that can be
captured only by adding an artificial viscosity. Another important disadvan-
tage lies in the difficulty to reproduce arbitrarily high density gradients with
a finite number of particles.

A particular implementation of the Lagrangian technique is the Smoothed Par-
ticles Hydrodynamics (SPH hereafter). Since this is the technique adopted in the
set of simulations used in this thesis, we now briefly present the main features of
this method. As previously described, in the Lagrangian techniques the fluid is
discretized, and the fluid particles are evolved according to hydrodynamics laws.
Physical quantities are smoothed among neighbour particles to avoid statistical
fluctuations. Given a quantity f (~r), its mean value is:

〈 f (~r)〉 =
∫

W(|~r −~r′|, h) f (~r′)d3~r′ (2.56)

where W is the smoothing kernel below described, and h is the spatial scale on which
the mean is computed and therefore can be considered as the effective resolution.

To each fluid element is assigned a density ρi, a mass mi ans a position~ri. Let
the value of the quantity f associated to the i–th particle be Ai. Eq. 2.56 can be
recast as follows:

〈 f (~r)〉 =
∫

W(|~r −~r′|, h)
f (~r′)

ρ(~r′)
ρ(~r′)d3~r′ (2.57)



30 Emiliano Munari

and it can be discretized substituting the mass element ρ(~r′)d3~r′ with mi. The
integral becomes then a sum:

f (~r′) = ∑
j

mj

Aj

ρj
W(|~r −~rj|, h) (2.58)

In this way the hydrodynamical quantities are discretized and the fluid equations
can be solved. The mass conservation is assured by the normalization imposed to
the kernel (

∫
W(~r)d3r = 1), while in the adiabatic regime the Euler and the energy

conservation equations become respectively:

(
d~v

dt

)
= −

N

∑
j=1

mj

[
P

ρ2
+

Pj

ρ2
j

]
~∇W(|~r −~rj|, h) (2.59)

(
dǫ

dt

)
=

P

ρ2

N

∑
j=1

mj(~v − ~vj)~∇W(|~r −~rj|, h) (2.60)

The kernel W represents the volume within which the mean is computed, as-
signing a different weight to the particles, weighting more the closer ones. In fact
the interactions among particles decays like the distance. Weighting all particles in
the simulation would require a prohibitive computational cost. Therefore a kernel
with compact support is usually adopted, like the following one, adopted in the
simulations used for this thesis:

W(r, h) =
8

πh3





1 − 6(r/h)2 + 6(r/h)3 0 ≤ r ≤ h/2

2(1 − r/h)3 h/2 ≤ r ≤ h

0 r ≥ h

(2.61)

2.7.4 The GADGET–3 code

The simulations used for this thesis have been carried out with the TreeePM–SPH
GADGET-3 (GAlaxies with Dark matter and Gas intEracT) code, a more efficient
version of the previous GADGET-2 code (Springel, 2005). As for the computation
of the gravitational force, the Plummer-equivalent softening length is fixed to ǫ =
5 h−1 kpc in physical units below z = 2, while being kept fixed in comoving units at
higher redshift. Besides the DM–only simulation, we also carried out a set of non–
radiative hydrodynamic simulations and two sets of radiative simulations, based
on different models for the release of energy feedback. The astrophysical processes
implemented in the SPH scheme used in our simulations are described below.
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Radiative cooling

In our simulations radiative cooling rates are computed by following the same
procedure presented by Wiersma et al. (2009). The code also includes a photo-
ionising, time-dependent, uniform ultraviolet UV/X–ray background radiation ex-
pected from quasars and first stars Haardt and Madau (1996), which reionises the
Universe at z ≃ 6. The effect of a photo-ionising background is that of signif-
icantly altering the cooling function and inhibiting gas collapse and subsequent
star formation. The contributions to cooling from each one of eleven elements (H,
He, C, N, O, Ne, Mg, Si, S, Ca, Fe) have been pre–computed using the publicly
available CLOUDY photo–ionisation code (Ferland et al., 1998) for an optically thin
gas in (photo–ionisation) equilibrium. Gas particles above a given threshold den-
sity are treated as multiphase, so as to provide a subresolution description of the
interstellar medium, according to the model originally described by Springel and
Hernquist (2003).

Star formation

The star formation in treated a sub–grid model for the InterStellar Medium (ISM)
following Springel and Hernquist (2003). We refer the reader to this paper for a
detailed description. The ISM is modelled as a hot medium inside which cold
clouds reside. Such clouds form from the cooling of high density gas. From the
collapse of the cold clouds stars can eventually form. In the code, a gas particle is
allowed to produce stars if the density ρi is above a given threshold and the gas is
Jeans unstable, that is:

hi

ci
>

1√
4πGρi

(2.62)

where hi is the SPH smoothing length and ci is the local sound speed. In order
to avoid that at high redshift gas particles exceed the density threshold, and form
stars, in regions outside virialized halos, the density must exceed also a value that
depends on the mean density of the Universe.

Once the criteria for star formation are satisfied, a gas particle forms star ac-
cording to the following equation:

dρ∗
dt

= −dρi

dt
=

c∗ρi

t∗
(2.63)

where c is a dimensionless star formation rate parameter and t the characteris-
tic timescale for star formation. This process produces stars continuosly, but for
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computational reasons a new star particle is created only after a significant part of
the gas particle mass has turned into stars according to the above formula. This
process takes place until the gas particle is entirely transformed into stars. From
one gas particle few star particles are generated, typically 2-3. This is set to avoid
spurious numerical effects due to gravitational interactions of particles with widely
differing masses. The newly produced star particle constitue a Simple Stellar Pop-
ulation, that is a coeval population of stars characterised by a given assumed initial
mass function (IMF) and same metallicity.

Some of the stars can explode as supernovae (SN). To model this, in the code all
the stars more massive than 8M⊙ are assumed to end as SN type–II, releasing the
energy (typically 1051 erg per SN) to the surrounding gas. This is done under the
instantaneous recycling approximation (IRA), since the lifetime of a massive star can
be considered shorter than the typical timestep of the simulation.

SNe are the responsible for the chemical enrichment of the ISM. There are three
channels for the production and distribution of metals.

• Stars in the mass range 0.8 − 8M⊙ can give rise to a type–Ia SN. In fact a
white dwarf in a binary system can accrete material from the companion.
This causes the dwarf’s core to reach the ignition temperature for carbon
fusion triggering the explosion.

• A star more massive than 8M⊙ at the end of the hydrostatic core burning
undergo an electron capture process, leading to a core collapse. The explosion
that follows ejects the external layers, giving rise to a SN type–II that enriches
the ISM with the elements produced by the star.

• a third way to eject matter in the ISM is the mass loss of intermediate and low
mass star by stellar winds.

Stars of different mass have different lifetimes, therefore the release of metals is
different and must taken into account. Many have been proposed, either indepen-
dent (Padovani and Matteucci, 1993; Maeder and Meynet, 1989; Chiappini et al.,
1997) or dependent on the metallicity (see e.g. Portinari et al., 1998).

Another important quantity to compute the metal release is the yield. It speci-
fies the amount of different metal species which are released during the evolution
of a SSP. For more details on the implementation of the yields we refer the reder to
Tornatore et al. (2007).

One of the most important quantity in modelling the star formation process
is the initial mass functon (IMF) Φ(m). It is defined as the number of stars of
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a given mass per unit logarithmic mass interval. It determines the relative ratio
between SNII and SNIa and, therefore, the relative abundance of α-elements and
Fe-peak elements. The shape of the IMF also determines how many long-living
stars will form with respect to massive short-living stars. This ratio affects the
amount of energy released by SNe and the present luminosity of galaxies, which is
dominated by low-mass stars.

There is no general agreement on whether the IMF at a given time is univer-
sal or dependent on the environment, or whether it is time dependent, meaning
that local variations of the values of temperature, pressure and metallicity in star–
forming regions affect the mass distribution of stars. The most commonly used
are the IMFs proposed by Salpeter (Salpeter, 1955), Kroupa (Kroupa, 2001) and
Chabrier (Chabrier, 2003). In our simulations stars of different mass are distributed
according to a Chabrier IMF, releasing metals over the time-scale determined by
the corresponding mass-dependent life-times taken from Padovani and Matteucci
(1993)

Feedback from galactic winds

It is well known (e.g. Balogh et al., 2001; Borgani et al., 2004) that cooling causes
the formation of too many stars. In order to regulate star formation and prevent
overcooling, an efficient mechanism to thermalize the SNe energy feedback must
be implemented. This is made by introducing a phenomenological description for
galactic winds, which are triggered by the SNII energy release.

Galactic outflows are observed (e.g. Martin, 1999) and are thought to play a key
role in transporting energy and metals produced by the stellar population into the
IGM/ICM. The momentum and the kinetic energy of these winds are regulated by
two parameters, η and χ. As suggested by Martin (1999), the wind mass loading is
proportional to the star formation rate Ṁ∗:

ṀW = ηṀ∗ (2.64)

Following Springel and Hernquist (2003), in the simulations used for this thesis it
is assumed η = 3. The fraction of SNe energy that powers the wind is regulated by
the parameter χ according to:

1

2
ṀWv2

W = χǫSNeṀ∗ (2.65)

where ǫSNe is the energy feedback provided by the SNe under the IRA for each
solar mass of stars formed.
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Winds are originated from gas particles which are stochastically selected among
the multiphase particles, with a probability proportional to their local SFR. There-
fore these particles come from star–forming regions and hence are heavily metal-
enriched.

As described in Tornatore et al. (2007), in the simulations used for this thesis
the scheme of kinetic feedback associated to wind galactic is left unchanged, using
instead the value of the wind velocity, vw, as a parameter to be fixed. In our simu-
lations we used two different values: 500km s−1 for the set without AGN feedback,
and 350km s−1 for the set with AGN feedback.

AGN feedback

Black hole (BH) growth and the associated energy release are responsible for a
a number of phenomena in galaxies and galaxy clusters, first of all on the star
formation in these systems. In Sect. 6 the effect of the feedback from BHs on the
dynamics of galaxies in clusters is analyzed and discussed.

In particular during a major phase of BH accretion strong outflows are pro-
duced, which interact with the surrounding gas. These outflows constitute a feed-
back process, the so–called AGN (active galactic nulei) feedback, that must be taken
into account when modelling galaxy and galaxy cluster formation.

The present simulations do not have enough resolution to follow the details of
BH growth. We must therefore use a sub–resolution description of supermassive
BH growth in galactic nuclei and the consequent feedback on the surrounding gas.
Following the approach presented in Springel et al. (2005a), BHs are described as
sink particles, which grow their mass by gas accretion and merging with other BHs.
A detailed description on the BH feedback implemented in the simulations used in
this thesis is presented in Hirschmann et al. (2013).

The accretion rate onto the black hole is parametrized by:

ṀB =
4π α G2M2

BH ρ

(c2
s + v2)3/2

(2.66)

where ρ and cs are the density and sound speed of the gas, respectively, α is a boost
factor for the density set to 100M⊙, and v is the velocity of the black hole relative
to the gas. The accretion is limited to the Eddington rate

ṀEdd ≡ 4π G MBH mp

ǫr σT c
(2.67)
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where mp is the proton mass, σT is the Thomson cross-section. ǫr is the radiative
efficiency which is related to the radiated luminosity Lr by:

Lr =
ǫr

1 − ǫr
ṀBH c2 (2.68)

where ṀBH is the accretion rate. It sets the fraction of the rest-mass energy of
the accreted gas converted into radiated energy. It is set to 0.1 in the simulations
used for this thesis, and is increased to ǫ f = 0.4 whenever accretion enters in the
quiescent “radio” mode and takes place at a rate smaller than one-hundredth of
the Eddington limit (e.g. Sijacki et al., 2007; Fabjan et al., 2010).

The BH mass is correspondingly decreased:

ṀBH = min(ṀEdd, ṀB) (2.69)

with the further requirement that its mass changes because of the feedback:

∆MBH = (1 − ǫr)ṀBH∆t (2.70)

Some fraction ǫf = 0.1 of the radiated luminosity Lr is thermally coupled to the
surrounding gas, providing the feedback mechanism.

A difference with the original prescription by Springel et al. (2005a) deals with
the BH seeding. Since BH must be seeded only in halos with a sufficient star
formation, a total stellar mass of 1011M⊙/h is required for a halo to be seeded with
a black hole particle (starting with a seed mass of 106M⊙/h). The position of the
BH particle is taken as the potential minimum of the FoF group.

One of the technical issues one has to face with when implementing AGN feed-
back deals with BH particles wandering away from the centre of galaxies by nu-
merical effects. In order to prevent this, a strict momentum conservation for the
smooth accretion of the gas is imposed, without any momentum transfer when
the gas is swallowed. Also, the conservation of momentum and centre of mass of
two BH particles merging is implemented. Moreover the dynamical friction force
acting on the BH particles is explicitly computed. In this way a black hole particle
remains within the host galaxy, even when it becomes a satellite of a larger halo.
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3

Dynamics of collisionless systems

In Chapter 2 the processes giving rise to cosmic structures are presented. Small
fluctuations of an initial density field grow because of their own gravitational at-
traction. The regions where the density becomes large enough can detach from
the Hubble flow and collapse to form the structures nowadays we observe. The
collapse does not end up in a singularity. For a collisional fluid it is easy to under-
stand that pressure can balance the gravitational attraction, providing a mechanism
for stopping the collapse. Since most of the matter, ∼ 84% according to latest result
by Planck data analysis (Planck Collaboration et al., 2013), in the Universe is dark
matter, which is non–collisional, this cannot be the reason why structures do not
end up in singularities. In this chapter we present the theoretical framework that
describes the equilibrium configurations that non–collisional matter can achieve
thanks to its own velocity dispersion.

In the last part of this chapter we present three techniques that make use of the
dynamics of some tracers of the dynamics to infer properties of the systems. The
dynamics in fact carries information on the energy content ,the structure and the
assembly history of the cosmological objects, providing information on quantities
that cannot be directly observed.

3.1 The collisionless Boltzmann equation

A complete description of a non–collisional system is provided by the distribution
function f (~x,~v, t), which is the density in the phase space. The number of objects
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lying in the volume d3x centered in ~x and having the velocity vector lying inside
the volume d3v centered in ~v is given by the following relation:

dn = f (~x,~v, t)d3xd3v (3.1)

By definition f ≥ 0. If the distribution function is known at the time t0, it is possible
to recover the configuration of the system at any time. For convenience we shall
introduce the position vector in the phase space:

(~x,~v) ≡ ~w (3.2a)

~̇w = (~̇x, ~̇v) = (~v,−~∇Φ) (3.2b)

where Φ is the gravitational potential. Since in a non–collisional fluid there are no
sudden changes in the particle position in the phase space, as we would have in
case of collisions, it is possible to introduce a continuity equation for f :

∂ f

∂t
+

6

∑
α=1

∂( f ẇα)

∂wα
= 0 (3.3)

Since xi and vi are independent coordinates in the phase space, the following rela-
tion holds:

6

∑
α=1

∂ẇα

∂wα
=

3

∑
i=1

(
∂vi

∂xi
+

∂v̇i

∂vi

)
= −

3

∑
i=1

∂

∂vi

(
∂Φ

∂xi

)
= 0 (3.4)

where the last equality is due to the fact that the gravitational potential does not
depend on velocity. Using this relation in the eq. (3.3) we obtain the non–collisional
Boltzmann equation:

∂ f

∂t
+

6

∑
α=1

ẇα
∂ f

∂wα
= 0 (3.5)

To better understand the meaning of this equation, we now recast it in another
form by making use of the Lagrangian derivative:

d f

dt
=

∂ f

∂t
+

6

∑
α=1

ẇα
∂ f

∂wα
(3.6)

The collisionless Boltzmann equation then reads:

d f

dt
= 0 (3.7)

This means that the fluid is incompressible in the phase space.
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3.2 The Jeans equations

The distribution function f depends on 7 variables, therefore it is usually quite
difficult to solve the collisionless Boltzmann equation. Still, the moments of eq.
(3.7) can provide useful information. Such equation can be recast as follows:

∂ f

∂t
+

3

∑
i=1

(
vi

∂ f

∂xi
− ∂Φ

∂xi

∂ f

∂vi

)
= 0 (3.8)

And integrating the velocities we obtain:

∫
∂ f

∂t
d3v +

∫
vi

∂ f

∂xi
d3v − ∂Φ

∂xi

∫
∂ f

∂vi
d3v = 0 (3.9)

where we have adopted the summation convention. The phase space volume
within which we are integrating (this means all the velocities) does not depend on
time and vi does not depend on xi. The time derivative and ∂/∂xi can be taken out
of the integrals. The surface of the integration volume is composed by the velocities

with modulus ∞. The theorem of the divergence states that
∫

V
~∇ f d3x =

∫
S f · n̂d2S,

where n̂ is a versor perpendicular to the surface element d2S. The last term of the
equation vanishes, since there are no particles with infinite velocity. By defining
the space density and the mean velocity as follows:

ν ≡
∫

f d3v vi ≡
∫

f vid
3v (3.10)

eq. (3.9) reads:
∂ν

∂t
+

∂(νvi)

∂xi
= 0 (3.11)

Multiplying eq. (3.8) times vj, integrating over the velocities and applying the
divergence theorem we obtain:

∂(νvj)

∂t
+

∂(ν vivj)

∂xi
+ ν

∂Φ

∂xj
= 0 (3.12)

where vivj =
1
ν

∫
vivj f d3v. We can rewrite this equation by performing the follow-

ing operation: (3.12)− vj(3.11). We obtain:

∂vj

∂t
+ vi

∂vj

∂xi
= −∂Φ

∂xj
− 1

ν

∂(νσ2
ij)

∂xi
(3.13)



40 Emiliano Munari

where we have introduced the stress tensor, that describes an anisotropic pressure:

σ2
ij = (vi − vi)(vj − vj) = vivj − vivj (3.14)

The last term of such equation is the equivalent of the pressure term of the Euler
equation. The velocity field of the non–collisional matter provides a support to
the system against the collapse in the same way the pressure does in a collisional
system.

3.3 Equilibrium of spherical systems

As presented in detail in Binney and Tremaine (1987), considering eq. (3.5) in
spherical coordinates, and taking its moments we obtain the equivalent of eq. (3.13)
in spherical coordinates.

d(νv2
r )

dr
+

ν

r

[
2v2

r −
(

v2
θ + v2

φ

)]
= −ν

dΦ

dr
(3.15)

Using the velocity dispersion σ instead of the velocity rms, we shall now impose a
further condition: let the system be invariant under rotations about the center. This

means that the system appears statistically isotropic. This implies that σ2
θ = σ2

φ. Let

us define the velocity anisotropy parameter:

β = 1 − σ2
t

σ2
r

(3.16)

where σt = [
σ2

θ +σ2
φ

2 ]1/2 is the tangential velocity dispersion. The anisotropy parame-
ter quantifies the anisotropy of the orbits. Such anisotropy is due to many processes
like dynamical friction, tidal processes, infall. The anisotropy parameter therefore
provides important information about such processes.

Cosmic structures form by the collapse of perturbations, therefore we may ex-
pect the radial velocity dispersion to be greater than the tangential component.
Substituting the expression for the gravitational potential dΦ/dr = GM(r)/r2, eq.
(3.15) reads:

M(r) = −rσ2
r

G

(
d ln ν

d ln r
+

d ln σ2
r

d ln r
+ 2β

)
Jeans equation (3.17)
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Although this equation is derived from the Jeans equations (3.11)-(3.12)-(3.13), here-
after we will refer to eq. (3.17) as the Jeans equation. The particles that satisfy this
equation are in equilibrium. It is possible to read this equation in another way:
particles in equilibrium are tracers of the potentials because with their kinematics
it is possible to infer the potential.

3.4 The virial theorem

So far we have dealt with the information on the single particles, but we may want
to have information on the global statistical properties of the systems. This resem-
bles the thermodynamical approach, where macroscopical quantities like tempera-
ture or pressure are derived from the dynamics of particles.

In Sect. 3.1 we have defined f as the number of particles in the phase space
volume. That was an arbitrary choice, and another definition could have been
used, like the luminosity or the mass within that volume. We now use it as the
mass, and the number density ν can therefore be replaced with the mass density ρ.
From eq. (3.12) we obtain:

∫
xk

∂(ρvj)

∂t
d3x = −

∫
xk

∂(ρvivj)

∂xi
d3x −

∫
ρxk

∂Φ

∂xj
d3x (3.18)

The last term is the so–called potential energy tensor Wjk. Assuming the density to
be null at the infinite, and applying the divergence theorem to the first term on the
right hand side gives:

∫
xk

∂(ρvj)

∂t
d3x = −

∫
ρvjvkd3x = 2Kjk (3.19)

where Kjk is the kinetic energy tensor and it can be decomposed in two terms by
means of the stress tensor:

Kjk = Tjk +
1

2
Πjk (3.20)

with

Tjk =
1

2

∫
ρvjvkd3x (3.21a)

Πjk =
∫

ρσ2
jkd3x (3.21b)
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Let Ajk be the first term of eq. 3.19 and consider (Ajk + Akj)/2. Since the tensors
Wjk,Tjk and Πjk are symmetric we obtain:

1

2

d

dt

∫
ρ(xkvj + xjvk)d

3x = 2Tjk + Πjk + Wjk (3.22)

Let the inertia tensor be defined as follows:

Ijk =
∫

ρxjxkd3x (3.23)

it is possible to demonstrate that (see Binney and Tremaine, 1987)

dIjk

dt
=

d

dt

∫
ρ(xkvj + xjvk)d

3x (3.24)

Combining it with eq. (3.22) we obtain the tensorial virial theorem:

1

2

d2 Ijk

dt2
= 2Tjk + Πjk + Wjk (3.25)

Taking the trace of eq. (3.21) we obtain Tr(T) + Tr(Π)/2 = K = kinetic energy.
It is also possible to demonstrate that the trace of Wij is the potential energy of the
system. Imposing the system to be in a steady state, the second derivative of the
inertia is null, and we obtain:

2K + W = 0 Virial theorem (3.26)

Let E be the total mechanical energy if a system. The following relation holds:

E = K + W = −K =
1

2
W (3.27)

A system forming by its material collecting together from a state of rest at infinity,
in which Ein = Kin = Win = 0, will successively collapse reaching an equilibrium
configuration. In this phase the system is bound and 0 < E f = −K f = W f /2.
Half of the potential energy contributes to the increase of the kinetic energy of the
system, and in some way the other half is disposed in order to achieve a binding
energy Eb = −E = K.
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3.5 Relaxation of collisionless structures

In dynamics, relaxation is the process by which a system approaches equilibrium
or by which it returns to equilibrium after a disturbance. So far we have consid-
ered the process of collisionless structure formation either in the initial moments
or in the final ones, where equilibrium has settled. We now want to investigate
the processes that lead to equilibrium. There exists a great variety of equilibrium
configurations, but structures, like galaxies or galaxy clusters, seem to occupy a
relatively small volume of this configuration space. In fact such objects obey a
number of tight scaling relations and have a restricted variety of density profiles.

In this section we want to discuss what determines the particular configuration
to which a collisionless system settles. In order to address this question we shall
first make some considerations about the distribution function. If the latter is inter-
preted as a probability function, f (~x,~v)d3xd3v gives the number of particles in an
infinitesimal volume of the phase space. in this way it is possible to study the evolu-
tion of the distribution function by applying the collisionless Boltzmann equation,
this distribution function is not observable. The number of objects, like galaxies in a
cluster, in a finite volume of phase space is the quantity we can observe. It is there-
fore convenient to define a coarse–grained distribution function fc(~x,~v) as the average
of f in some phase–space volume element centered on (~x,~v). Given this definition,
the coarse-grained DF does not obey the collisionless Boltzmann equation. How-
ever, an observer would detect an equilibrium configuration if ∂ fc/∂t = 0, as there
is no observable evolution. An operational definition of relaxation may therefore
be that of a process leading the system toward a state with ∂ fc/∂t ≃ 0.

By doing a comparison with what happens to a collisional gas that settles to
a Maxwell–Boltzmann velocity distribution, we might expect that the collisionless
particles approach a ”most probable” state. In order to do that we have to seek the
probability density p that maximizes the entropy:

S ≡ −
∫

phase space
p ln pdτ (3.28)

where τ is the phase space volume. Identifying the probability density p with the
distribution function f , and the volume in the phase space τ with d3xd3v, we obtain
the entropy for a collisionless system. It can be shown (Binney and Tremaine, 1987)
that for a system of finite mass and energy, no f (~x,~v) maximizes the entropy. The
more concentrated a system is, the larger the entropy becomes. Physically this is
due to the long–range nature of gravity, which allows bound particles to fill an
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infinitely large volume in phase space. Eq. (3.7) applied to eq. (3.28) guarantees
that dS/dt = 0, meaning that the relaxation process is adiabatic. In this case there
is no evolution to a ”most probable” state. Different conclusions are reached if we
consider the coarse–grained distribution function fc. In this case there are hints
that S = S(t) may be a non–decreasing function of time, although the question is
still debated (Mo et al., 2010).

The entropy approach is based on the idea of looking for some fundamental
physical process that leads the system to an equilibrium state. Another approach is
to consider the equilibrium configuration as a reflection of the particular initial con-
ditions. By following this approach, we now discuss four relaxation mechanisms:
phase mixing, chaotic mixing, violent relaxation and Landau damping.

3.5.1 Phase and chaotic mixing

Let us consider two particles orbiting in a potential, and having orbits with similar
initial frequency and phase. This means that the trajectories in the phase space are
very close to each other. The small difference in the phase after some time grows
considerably. They separate linearly in the phase space, and the process is called
phase mixing.

During this process, while f remains constant, the coarse–grained distribution
function fc decreases with time, as more and more unoccupied phase–space volume
is mixed in. After some time, however, fc stops evolving. In this sense phase
mixing is considered a relaxation process. The time scale for the relaxation to
occur strongly depends on the particular configuration of the system, but it is
usually much longer than a dynamical time.

Fig. 3.1 provides a schematic representation of how an initially compact group
of points in the phase space spreads out in a larger region of lower coarse–grained
phase space density.

If the orbits are not regular as in the case just described, then they experience
the so–called chaotic mixing. Two such kind of orbits, initially close one another,
diverge exponentially as time goes by. The orbits will spread through the ”Arnold
web” (Mo et al., 2010), entirely covering it after some time. As in the phase mixing
case, the chaotic mixing relaxes the coarse–grained distribution function leaving
unaltered the fine–grained one. Because of the exponential divergence of the tra-
jectories, chaotic mixing erases the memory of initial conditions faster than the
phase mixing does.
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Figure 3.1: Schematic representation of the phase mixing process. Dashed lines
represent orbits of constant energy. (a) The shaded circle is the initially compact
group of points. The slightly different periods of the point cause these points to
spread out, as shown by the shaded areas representing two successive moments
of the evolution. (b) After several dynamical times the coarse–grained phase space
density becomes constant within the annulus. [After Mo et al. (2010)]

3.5.2 Violent relaxation

Let us consider the process of collapse of an initial perturbation in the density
field that leads to the formation of a cosmological object like a galaxy cluster. Let
the total mechanical energy per mass unit be ǫ = v2/2 + Φ. During the collapse
the gravitational potential varies considerably. The energy ǫ therefore will change
accordingly:

dǫ

dt
=

1

2

dv2

dt
+

dΦ

dt
= ~v · d~v

dt
+

∂Φ

∂t
+~̇r · ~∇Φ =

∂Φ

∂t
(3.29)

where we have used ~̇v = −~∇Φ. The way energy changes depends on the particular
configuration of the system, but the overall effect is a broadening of the energy
distribution. A time–varying potential therefore provides a relaxation mechanism
called violent relaxation.

From eq. (3.29) it is possible to notice that the energy change is independent on
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mass. This implies that violent relaxation does not segregate particles according
to their mass. This is different from what happens in a collisional system. In this
case, two body encounters cause an exchange of momentum. More massive particle
transfer energy to lighter ones, becoming more tightly bound sinking toward the
center of the system.

Although a time–varying potential may provide a relaxation mechanism, it is
not a sufficient condition for equilibrium. One can build time–varying potentials
that do not lead to equilibrium. A time–varying potential and a mixing are both
needed to have violent relaxation.

The time scale of this relaxation process is:

tvr =

〈
1

ǫ2

(
∂Φ

∂t

)2
〉−1/2

(3.30)

and it is approximately equal to the free–fall time of the system t f f = (3π/32Gρ̄)1/2,
where ρ̄ is the average density. This shows that the relaxation process is very fast.

It is worth noting that numerical simulations have shown that the process of vi-
olent relaxation is never complete. Final energies of the particles appear correlated
with their initial values, and so does the shape of the system.

3.5.3 Landau damping

Gravitational interactions damp the perturbation waves of the density field of col-
lisionless particles, providing a mechanism for relaxation.

It is possible to demonstrate that if we consider a fluid with a perturbation
wavelength λ < λJ , where λJ is the Jeans length (see eq. 2.2) then the perturba-

tion is stable. The wave propagates with a phase velocity vp = cs(1 − λ2/λ2
J )

1/2,
where cs is the sound speed. This can be understood by considering that the energy
density of an ordinary sound wave is positive. The opposite holds for the gravita-
tional energy density, because the enhanced attraction in the compressed regions
is greater than the reduced attraction in the expanded regions. Therefore the Jeans
length specifies where the net energy density becomes negative and the system can
evolve to a lower energy state by allowing the wave to grow.

In case of a self gravitating collisionless system it is possible to demonstrate
that a similar relation holds, provided that the sound speed is substituted with
the velocity dispersion σ of the collisionless particles. Perturbations with λ ≥ λJ

are unstable and grow, while those with λ < λJ propagate with a group velocity
vp ≤ σ.
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The Landau damping works as follows (a mathematical treatment can be found
in Binney and Tremaine, 2011). A particle having velocity very different with re-
spect to the wave one will experience no net energy gain. In fact as it overtakes the
wave, or is overtaken by it, it falls into the potential perturbation gaining energy,
that is immediately lost as it exits the perturbation potential. On the other hand,
particles near the resonance of the wave, v ≃ vp, will experience a net change of
energy. Those with v & vp will be decelerated by the wave, and a transfer of en-
ergy from the particle to the wave occurs. Those with v . vp will be accelerated
gaining energy at the expense of the wave. Since in general it will be ∂ f /∂v < 0,
there are more slow moving particles than fast ones. The net result is a transfer of
energy from the wave to the particles, therefore the perturbation is damped. The
rate is determined by the gradient of the velocity distribution function at the group
velocity of the wave. The energy of the perturbation is converted into random mo-
tions of the particles. The Landau damping, along with phase mixing, limits the
effectiveness of violent relaxation, by damping the potential fluctuations that cause
a mixing in particle binding energy.

3.6 The pseudo phase–space density

Numerical simulations have shown that DM halos in equilibrium are characterized
by a self–similar spherically averaged density profile. The analytical expression of
this profile was first proposed by Navarro et al. (1996, 1997) (NFW hereafter) as the
best fit relation for DM halos:

ρ(r) =
ρ0

r
rs
(1 + r

rs
)2

(3.31)

where ρ0 is the normalization and rs is the so–called scale radius. This profile has
a cusp in the center, the logarithmic slope being −1, while in the outer regions the
slope is −3. The scale radius is the distance from the center where the slope is equal
to −2 and therefore is a shape parameter. An equivalent way to express the scale
radius is using the concentration parameter c = rv/rs, where rv is the virial radius.
Such concentration parameter has proven to be sensitive to the mass and the epoch
of formation of the systems. Generally, the lower the mass of a halo and the higher
its formation redshift, the higher its concentration (see, e.g. Muñoz-Cuartas et al.,
2011).

The universality appears to hold regardless of the choice of the linear power
spectrum of fluctuations Navarro et al. (1997) or when analysing the monolithic
build–up of hot dark matter Wang and White (2009).
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Such universality seems to be due to some underlying fundamental process.
Many have been claimed, like mergers, dynamical friction, angular momentum or
entropy generation during virialization (Ludlow et al., 2013), but no general agree-
ment has been achieved. Higher resolution simulations have recently shown devi-
ations from an NFW profile, and a third parameter is actually required to describe
the halo shape accurately. The Einasto profile has been proposed as a universal pro-
file (see, e.e. Navarro et al., 2010; Ludlow et al., 2011) providing an excellent fit to
simulated halos. This profile is characterized by a logarithmic slope with adjustable
parameter Γ:

ln (ρ/ρs) = − 2

χ

[(
r

rs

)Γ

− 1

]
(3.32)

Although the Einasto profile provides a better fit to simulated halos than NFW,
it does not explain the origin of the universality. In recent years a new quantity has
been considered as universal profile, the pseudo phase space density (PPSD hereafter):

Q(r) = ρ/σ3 (3.33)

where ρ is the total matter density profile and σ is the 3D velocity dispersion of
the tracers of the gravitational potential (Taylor and Navarro, 2001; Ludlow et al.,
2010). An equivalent definition for the PPSD is the following:

Qr(r) = ρ/σ3
r (3.34)

where the total velocity dispersion has been substituted with the radial component
σr.

Taylor and Navarro (2001) and Dehnen and McLaughlin (2005) have shown
that for simulated DM–only halos, the PPSD relation takes a simple power–law
expression:

Q(r) = ρ/σ3 ∝ r−α (3.35)

Also Qr(r) obeys a power-law expression like Q(r), but with a different exponent.
A power law is much simpler to characterize than a complex expression like the
NFW. Moreover, it is the simplest form that a halo relation could take, and this
suggests that the PPSD may be the most fundamental aspect of dark matter halos.

In fact, assuming the PPSD to be a power law, it is possible to analytically
derive the density profile of halos. Dehnen and McLaughlin (2005) demonstrates
that only one solution exists for a particular ”critical” value of α when considering
realistic profiles of the velocity anisotropy parameter β (see eq. 3.16). In particular,
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they use the radial definition of the PPSD, eq. (3.34), and β depending linearly on
γ = −d ln ρ/d ln r, obtaining the value α = 1.94.

Different conclusions are reached by Ludlow et al. (2011). By using a set of
simulations they showed that the exponent α slightly varies from halo to halo.

If the velocity anisotropy profile is assumed to be known, by substituting the
power law of eq. (3.35) in place of the quantity ρ/σ3

r , the Jeans equation can be
rewritten in the following way (Dehnen and McLaughlin, 2005; Ludlow et al., 2011):

(
γ′ − 6

5
β′
)
+

2

3

(
γ + α +

3

2

)(
γ +

2

5
α +

6

5
β

)
= −3

5
ksx2−2α/3y1/3 (3.36)

where the primes indicate the derivative with respect to ln x, y = ρ/ρs, x = r/rs,
ks = 4πGρsr

2
s /σ2

r . The latter is a measure of the velocity dispersion in units of the
”natural” velocity scale of the halo at rs. For the moment let us consider the simple
case β(r) = 0. In this case three central asymptotic behaviours are possible:

1. a steep central cusp, γ → 2α − 6

2. a central hole where y(0) = 0

3. a ”critical” solution with a shallow central cusp, γ → −2α/5

The only physically meaningful solution is the third one, which is the limiting
case where the radius of the central hole solution goes to zero, and corresponds
to a maximally mixed state for given halo binding energy and mass (Taylor and
Navarro, 2001).

The same conclusions are reached if the velocity anisotropy is not constant,
provided that β(r) → 0 as r → 0.

In left panel of Fig. 3.2 we show that when an appropriate exponent of the
PPSD is chosen, the Jeans equation allows to recover the density profile with the
same accuracy of a direct fit of the Einasto profile to a simulated halo. This means
that Einasto and power-law PPSD models provide an equally good description of
the spherically averaged structure of simulated CDM haloes. α and Γ constitute
equivalent measures of the shape of the mass profile.

In order to compute the density profile, a velocity dispersion must be assumed,
as above explained. The choice is not totally arbitrary, as the velocity anisotropy
β(r) and the logarithmic slope γ(r) of the density profile appear to be related to
each other (Hansen and Moore, 2006; Ludlow et al., 2011). The right panel of Fig.
3.2 shows the β − γ relation for three simulated halos. Hansen and Moore (2006)
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Figure 3.2: Left panel: Density profile of the billion-particle Aq-A-1 (Ludlow et al.,
2011) simulated halo (black line) and the profiles obtained by setting the free ex-
ponent Γ of the Einasto profile and the free exponent α of the PPSD in order to
highlight the similarity of the two descriptions. Right panel: Velocity anisotropy –
density logarithmic slope relation for three halos characterized by different Einasto
parameters. The dotted line is the relation provided by Hansen and Moore (2006)
and the dot–dashed line is the one by Ludlow et al. (2011). Modified from Ludlow
et al. (2011).

identify a universal relation between these two quantities, shown as dot–dashed
line in Figure 3.2:

β(γ) = −0.2(γ + 0.8) (3.37)

shown as a dotted line in Fig. 3.2. In the outer regions of the halos a departure from
the relation of Hansen and Moore (2006) suggests that a more complex relation
might hold. Ludlow et al. (2011) propose the following parametric relation:

β(γ) =
β∞

2

(
1 + er f (ln[(Aγ)2])

)
(3.38)

where β∞ and A depend on the Einasto shape parameter Γ (see Ludlow et al., 2011,
for a quantitative presentation of these parameters).

Studying the time evolution of this relation, Hansen and Moore (2006) find that
neither the density profile gives rise to the velocity anisotropy profile nor vice versa.
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Instead, they find that the β−γ relation is in place as soon as a given density profile
exists and has reached a certain degree of stability, meaning that these two profiles
are the result of a fundamental process happening during the structure build–up.

3.7 Mass content from dynamical information

We have seen in Sect. 2.6 that the measure of the mass of cosmological objects,
such as clusters of galaxies, has proven to be an important tool for cosmological
applications. The mass is not a direct observable, and many techniques have been
developed to infer it by measuring observable quantities. Two methods that are
widely used to infer the mass profile of galaxy clusters are the X-ray and the lens-
ing techniques. The former makes use of the observations of the X-ray emission
of the hot intracluster plasma (ICM hereafter). The lensing technique makes use
of the relativistic effect of distortion of the trajectories of light emitted by distant
background galaxies due to the mass of the observed cluster. These two methods
have anyway some limitations. In the case of the X-ray technique, the limitation
comes from the usual assumption that the plasma of the cluster is in hydrostatic
equilibrium, and the cluster approximately spherically symmetric with no impor-
tant recent merger activity. As for the lensing technique, its limitation is that it
allows to compute the projected mass only, and this includes all the line-of-sight
mass contributions. The complementarity of the different techniques is a great
advantage to reliably constrain the mass of a cluster.

Here we want to discuss another kind of information, coming from the kine-
matics of the galaxies belonging to the observed cluster. In fact, the potential well
of the cluster, due to the mass, is the main driver of the orbital motion of the galax-
ies which, in the absence of mutual interactions, can be treated as test particles in
the gravitational potential of the cluster, which is considered as a system mainly
made of non–collisional matter. The kinematics of galaxies therefore carries the
information about the mass content of the cluster. The motion takes place in a
6-dimensional phase space, but the observations are able to capture only 3 of these
dimensions, namely 2 for the position and one for the line of sight (los, hereafter)
velocity. This is one of the most important limitations of the mass estimate through
the observation of the kinematics of galaxies, and the techniques presented here
have to face this issue.

Observed los galaxy velocities must be corrected for the effect of cosmological
expansion to obtain the velocities that pertain to the motion of the galaxies in their
cluster. In fact, the measured redshift of a cluster galaxy is due to the combined
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effect of the cosmological expansion and of the peculiar motions of galaxies within
the cluster. Harrison and Noonan (1979) pointed out that in order to properly mea-
sure the velocity dispersion of the cluster galaxies, a correction must be applied
to the observed velocities. A galaxy emitting light with wavelength λg will be ob-
served having a redshift 1+ zobs = λobs/λg, where λobs is the observed wavelength.
We can think to split the information travel from the galaxy to the final observer
in two steps: first from the galaxy to an observer at the center of the cluster, and
then from this observer to the final one. If λcl is the wavelength observed by the
observer at the center of the cluster, the redshift of the galaxy for the final observer
reads:

1 + zobs =
λobs

λcl

λcl

λg
= (1 + zcos)(1 + zpec) (3.39)

In the non relativistic case, the peculiar velocity can be approximated as zpec =
vpec/c, and the previous equation becomes:

zobs = zcos +
vpec

c
(1 + zcos) (3.40)

Therefore to obtain the velocity of a cluster galaxy in the cluster rest-frame from
the observed galaxy redshift zg, one must use the following expression:

vr f = c · (zg − zcos)/(1 + zcos) (3.41)

The rest-frame velocities are those that must be used in the determination of the
cluster mass by the methods described below.

3.7.1 Dispersion Kurtosis method

The first method to infer the mass content of a galaxy cluster we present here is the
so–called Dispersion–Kurtosis technique, hereafter shortened to DK, first introduced
by Łokas (2002). It relies on the joint fit of the second and fourth moment of the
velocities and the related moments of the Jeans equation.

In order to solve the Jeans equation (eq. 3.17), a profile for the velocity anisotropy
β(r) must be assumed. Many profiles have been proposed (see, e.g. Osipkov, 1979;
Merritt, 1985; Mamon and Łokas, 2005a; Tiret et al., 2007), although simulations
seem to suggest that for an ideal cluster of galaxies, obtained by stacking many
simulated clusters, the velocity dispersion profile is almost constant in the inner
regions (r < rs), with a value near the isotropy, and becoming slightly radially
anisotropic outward (see, e.g. Wojtak et al., 2013). A collapsing perturbation has
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Figure 3.3: Configuration of the observation of the los velocity dispersion at a
projected radius R in a spherical system.

the internal region characterized by radial motions toward the center. The radial
motion far from the cluster follows the Hubble flow, moving away from the clus-
ter. Therefore we expect that in between these two regimes a region with no radial
motion is present. The radius at which this happens is called turnaround radius,
for which σr = 0. If we model the system with eq. (3.17), the Hubble flow is not
included, therefore we can impose that σr → 0 for r → ∞. The solution of the Jeans
equation assuming β = const is (Łokas, 2002):

νσ2
r = r−2β

∫ ∞

r
r2βν

dΦ

dr
dr (3.42)

Although this equation provides a solution, it is of no help in a real case, as the ra-
dial velocity dispersion is not an observable quantity. Such quantity can be related
to the line–of–sight velocity dispersion σlos, which is an observable by definition,
via the following relations:

Σ(R) = 2
∫ ∞

R

νrdr√
r2 − R2

(3.43)

Σ(R)σ2
los = 2

∫ ∞

R

νσ2
r rdr√

r2 − R2
(3.44)
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where Σ is the surface number density, and we have adopted the convention of r
for the 3D radii and R for the projected distance from the center, see Fig. 3.3. These
are Abel integrals, and the solutions are provided in Binney and Tremaine (1987)
to be the following:

ν(r) = − 1

π

∫ ∞

r

dΣ

dR

dR√
R2 − r2

(3.45)

ν(r)σ2
r (r) = − 1

π

∫ ∞

r

d(Σσ2
los)

dR

dR√
R2 − r2

(3.46)

Unfortunately eq. (3.44) and (3.46) are only valid for the specific case β(r) = 0. In
general, the knowledge of σlos alone is not enough for solving these equations. In
fact, systems with different densities and velocity anisotropies can produce identi-
cal σlos profile. Considering higher order moments of the velocity distribution can
break this degeneracy.

In the case of fourth–order moments there are three different components,

v4
r , v4

θ = v4
φ, v2

r v2
θ = v2

r v2
φ, related by two higher order Jeans equations (Merrifield

and Kent, 1990). In Łokas (2002) it is shown that for a generic velocity anisotropy,
constant with radius, the distribution function can be constructed from an energy–
dependent function multiplied by some function of angular momentum:

f (E, L) = f0(E)L−2β (3.47)

where E = −Φ − v2/2 is the energy and L = (v2
θ + v2

φ)
1/2r the momentum. By

using this expression for the distribution function, it is possible to demonstrate
that the two Jeans equations for the fourth–order moments reduce to the following:

d

dr
(νv4

r ) +
2β

r
νv4

r + rνσ2
r

dΦ

dr
= 0 (3.48)

the solution being:

νv4
r = 3r−2β

∫ ∞

r
r2βνσ2

r (r)
dΦ

dr
dr (3.49)

The line–of–sight fourth moment can be obtained by projection (an expression is
provided in Łokas, 2002), and scaled by the dispersion to obtain the kurtosis:

κlos(R) =
v4

los(R)

σ4
los(R)

(3.50)
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A joint fit of the velocity dispersion and of the kurtosis allows to break the
degeneracy and recover the density profile of the system. We want to remind that
in order to apply this technique, the system is assumed to be spherical symmetric
and in equilibrium. This technique is applied to a galaxy cluster in Chapter 5.
More details are provided in that section.

3.7.2 MAMPOSSt

The MAMPOSSt technique, recently developed by Mamon et al. (2013), performs
a maximum likelihood fit of the distribution of tracers of the system dynamics in
projected phase space, assuming models for the mass profile, the anisotropy profile,
the projected number density profile and the 3D velocity distribution.

The distribution function can be parametrized as follows:

f (~r,~v) = ν(r) fv(~v|r) (3.51)

where ν(r) is the number density profile. It is possible to write the los velocity
distribution in cylindrical coordinates, where ~ez is the axis along the los while ~e⊥
and eφ are the axes perpendicular to the los. Referring to Fig. 3.3 for the notation,
the los velocity distribution at a point distant r from the center, and with projected
distance R, reads:

h(vz|R, r) =

(
dN

dvz

)
=
∫ +∞

−∞
dv⊥

∫ +∞

−∞
fv(vz, v⊥, vφ)dvφ (3.52)

Integrating along the los, the surface number density is obtained:

g(R, vz) = Σ(R)〈h(vz|R, r)〉los

= 2
∫ ∞

R

rν(r)√
r2 − R2

h(vz|R, r)dr

= 2
∫ ∞

R

rν(r)√
r2 − R2

(
dN

dvz

) ∫ +∞

−∞
dv⊥

∫ +∞

−∞
fv(vz, v⊥, vφ)dvφ (3.53)

In the DK method the distribution function was parametrized in terms of energy
and angular momentum (see eq. 3.47). In MAMPOSSt a different approach has
been followed. By assuming the form of the 3D velocity distribution, eq. (3.53)
provides the analytical expression of the surface density distribution of tracers in
projected phase space (PPS hereafter) through a single integral. In Mamon et al.
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(2013) the explicit computation for a Gaussian distribution function shows that
h(vz|R, r) depends on σr(r), and the radial velocity dispersion becomes:

σ2
r =

1

ν(r)

∫ ∞

r
exp

[
2
∫ s

r
β(t)

dt

t

]
ν(s)

GM(s)

s2
ds (3.54)

Once the velocity anisotropy and mass profiles are assumed, using eq. (3.46), the
projected number density profile, eq. (3.53), is fully specified. If we define ∆Np

to be the number of objects within a given radial range, the probability density of
observing an object at position (R, vz) of PPS is:

q(R, vz) =
2πRg(R, vz)

∆Np
(3.55)

The parameters of the assumed profiles are obtained by using a maximum likeli-
hood estimation, that is by minimizing:

− lnL = −
n

∑
i=1

ln q(Ri, vz,i|~θ) (3.56)

for the N–parameter vector ~θ, where n is the number of data points.
We remind that this technique assumes the system to be in equilibrium and

spherically symmetric. In Sect. 5.4 we apply this technique to a real, observed
cluster. More details are provided in that section.

3.7.3 The caustic technique

The caustic technique, introduced by Diaferio and Geller (1997), is different from
the other two methods, as it does not require dynamical equilibrium, but only
spherical symmetry. In projected phase space, member galaxies tend to gather
together, with a characteristic trumpet shape in the (R, vlos) plane (see Fig. 3.4).
Measuring the velocity amplitude A of the galaxy distribution gives information
about the escape velocity of the system. In turn, the escape velocity is related to
the potential.

We shall now briefly describe how this technique works. If we assume a spher-

ically symmetric system, the escape velocity is vesc(r) =
√
−2φ(r), where φ(r) is

the gravitational potential. Because of the meaning of escape velocity, it is unlikely
for a galaxy having velocity greater than vesc to be a member of the cluster. In the
left panel of Fig. (3.4) the PPS of a simulated cluster is shown. The amplitude A
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Figure 3.4: Left panel: phase space diagram of a simulated cluster. The black
lines with 1 − σ error bars and the cyan lines are the estimated and true caustics
respectively. The symbols are the particles used as tracers of the internal dynamics;
the blue dots are the bound particles. [After Serra and Diaferio (2013)]. Right panel
Radial profile of Fβ for a stacked sample of galaxies. The horizontal dashed line
shows the commonly used value Fβ = 0.5. [After Biviano and Girardi (2003)].

of the caustic is a measure of the average component along the los of the escape
velocity at that projected distance from the center:

A2(r) = 〈v2
esc,los〉 (3.57)

For a cluster with no rotation 〈v2
θ〉 = 〈v2

φ〉 = 〈v2
los〉, and the velocity can be ex-

pressed as 〈v2〉 = 〈v2
los〉g(β) where:

g(β) =
3 − 2β(r)

1 − β(r)
(3.58)

By combining eq. (3.57) and (3.58) follows:

− 2φ(r) = 〈v2
esc(r)〉 = A2(r)g(β) (3.59)

The mass of an infinitesimal shell of matter is:

Gdm = G4πr2ρ(r)dr = −2φ(r)F (r)dr (3.60)

where:

F =
−2πGρ(r)r2

φ(r)
(3.61)
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The mass profile is obtained by integrating eq. (3.60):

GM(< r) =
∫ r

0
A2(r)Fβ(r)dr (3.62)

where Fβ(r) = F (r)g(β). Formally, determination of the mass profile would re-
quire knowledge of both ρ(r) and β(r). To overcome this problem, Fβ = const is
usually assumed, an assumption based on the analysis of cluster-size halos from
cosmological numerical simulations (see Diaferio and Geller, 1997; Diaferio, 1999).
In this case eq. (3.62) reads:

G(M < r) = Fβ

∫ r

0
A2(r)dr (3.63)

Such strong assumption was first suggested in Diaferio (1999), who proposes the
value Fβ = 0.5. Serra et al. (2011) correct this value to 0.7, while Biviano and
Girardi (2003) show the Fβ(r) profile obtained as a smooth approximation of the
result obtained by Diaferio (1999) for a ΛCDM cosmology (see right panel of Fig.
3.4). Fβ = const appears to be a good assumption except in the innermost regions
of the clusters. Provided that Fβ = const, the exact value does not alter the mass
profile. Therefore quantities depending on the profile shape, like the scale radius,
are not affected by the particular choice of the value of Fβ.

It is worth noting two important aspects of this technique. Unlike the DK and
MAMPOSSt techniques above described, the caustic method does not require the
system to be in equilibrium, but only to be spherically symmetric. For this reason
it allows to investigate the regions beyond the virial radius. In Sect. 5.4 we apply
this technique to a real, observed cluster. More details are provided in that section.
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4

Phenomenology of galaxy clusters

The simplest definition of galaxy cluster is that of an overdensity in the number of
galaxies. In fact galaxy clusters can contain up to some thousands galaxies, moving
in the potential well of the cluster with velocities of hundreds of km s−1 on a scale
of hundreds kpc. Such a definition can be misleading, as nowadays clusters are
known to be mainly (∼ 80%) composed by DM, which is not directly observable but
whose presence drives the physical processes we can observe, e.g. the luminosity
of galaxies, the X–ray emission of the hot plasma or the lensing distorsion. These
processes and the detection of them is discussed in the next sections. Around
∼ 15% of cluster mass is in the form of a hot plasma called Intracluster Medium
(ICM). Only ∼ 5% of the mass is made of stars forming galaxies.

In this Chapter we present the methods to detect clusters and to infer their
mass. In fact in order to build a sample of galaxy clusters to study these objects,
one needs an efficient method to identify clusters over a wide redshift range and
an observable estimator or ”proxy” of the cluster mass. Once the observational
methods have been reviewed, the properties of cluster galaxies and the physical
processes taking place in these systems are discussed. In fact although the baryon
content is very small, on scales smaller than 10 Mpc gas–dynamical processes be-
come fundamental in shaping galaxy formation and evolution and consequently
the observational properties of these structures. For this reason it is important to
understand the baryonic processes taking place in the clusters, and how they can
be observed to obtain information on the system.
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4.1 Optical identification of clusters

The first modern method of galaxy clusters identification and classification was
implemented by Abell in 1958 (Abell, 1958). His method was based on eye iden-
tification of apparent overdensities of galaxies in the photographic plates of the
Palomar Observatory Sky Survey. The first release contained 2712 clusters, and it
constitutes the basis of the largest galaxy cluster spectroscopic survey completed
so far, the ESO Nearby Abell Cluster Survey (ENACS, Katgert et al., 1996, 1998).

Nowadays catalogues are based on automated procedures and do not rely on
the observer’s eye anymore. Many cluster identification methods have been devel-
oped. We now summarize the most widely used methods in the optical band.

The most used one, when redshift information is not available, is the Matched
Filter (Postman et al., 1996). The spatial and luminosity distribution of observed
galaxies in a given field is modelled as the sum of two contributions, one from the
field and another from the cluster:

D(R, m) = b(m) + NcN(R)Φ(m) (4.1)

the b(m) is the background galaxy count as a function of the magnitude m, and
the other term is the one relative to the cluster and is composed by three terms:
N(R) is the projected radial profile of the cluster galaxies as a function of the
projected radial distance from the cluster center, R, Φ(m) is the differential cluster
luminosity function (LF hereafter) and Nc is a measure of the number of cluster
galaxies, the so–called richness. The best parameters are chosen by a Maximum
Likelihood procedure aimed at minimizing the difference between the observed
galaxy distribution, D(R, m), and the model. The Matched Filter algorithm has
been used on data from the ESO Imaging Survey (Olsen et al., 1999), the Sloan
Digital Sky Survey (SDSS, Bahcall et al., 2003), the 2 Micron All Sky Survey (2MASS,
Kochanek et al., 2003), and several other surveys (see Biviano, 2008, and references
therein).

If, on the other hand, the redshift information is available, other methods are
used, the most commonly adopted being the friends–of–friends percolation algo-
rithm (FoF hereafter, Huchra and Geller, 1982; Geller and Huchra, 1983). The idea
of this method is to link galaxies to one another according to their distance within
a physical overdensity. Galaxies more distant than the chosen linking length are
not considered part of the cluster. Of course the linking length is an arbitrary pa-
rameter, and different choices are possible (see, e.g. Huchra and Geller, 1982; Eke
et al., 2004; Berlind et al., 2006). The FoF method has been applied many times in
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spectroscopic surveys, e.g. the Center for Astrophysics Redshift Survey (Geller and
Huchra, 1983), the Southern Sky Redshift Survey (Maia et al., 1989), the Las Cam-
panas Redshift Survey (Tucker et al., 2000), the ESO Slice Project survey (Ramella
et al., 1999), and, more recently, the SDSS, the Two Degree Field Galaxy Redshift
Survey (2dFGRS), and the 2-Micron All Sky Redshift Survey (2MRS) (see Biviano,
2008, and references therein).

Another method used to identify clusters is the Cluster Red Sequence (CRS, Glad-
ders and Yee, 2000). This method relies on the observational evidence that all rich
clusters up to z ∼ 1 have a well defined sequence of red galaxies in the color–
magnitude diagram. The color bands are chosen so as to bracket the 4000Å break
feature of galaxy spectra. At z > 1 the 4000Å break feature is shifted in the infrared
(IR) frequencies, hence IR observations are needed. Selecting galaxies around the
red-sequence, it is possible to exclude most of background and foreground galax-
ies, which are redder and bluer respectively. On the other hand in unrelaxed,
low–mass clusters the red sequence may be not established yet, making the CRS
technique not efficient. In particular, at high redshift, the fraction of early–type
galaxies (ETG) decreases, making the red sequence less easily detectable.

The maxBCG method (Bahcall et al., 2003) is based on the fact that the brightest
cluster galaxy (BCG) generally lies in a narrow region of the color–magnitude plot
(see, e.g. Gladders and Yee, 2000). In Koester et al. (2007) this method has been
applied to SDSS data, providing a catalogue composed of 13823 clusters out to
z = 0.3. The comparison with the results of the MF method shows that about 80%
of the systems are identified by both maxBCG and MF.

A geometrical approach is instead adopted in the Voronoi Galaxy Cluster Finder
(VGCF, Ramella et al., 2001). The projected space is partitioned according to the
Voronoi tessellation, so as each cell contains only one galaxy. The inverse of the
cell area defines the local galaxy density. Clusters are defined as ensembles of ad-
jacent cells with a density above a given threshold. This method is non-parametric,
therefore it does not require a priori hypotheses on the cluster properties, such as
cluster size, density profile, or shape. Barrena et al. (2005) showed that the VGCF
method is even better than the MF method.

Mixed methods that exploit the advantages of different methods have been im-
plemented, and are presented in the review by Biviano (2008).
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4.2 Observational methods

In order to use galaxy clusters for cosmological analysis, cluster catalogues must
provide an estimate of the mass of these objects. If a considerable amount of tele-
scope time is available, the most commonly used techniques are the X–ray tech-
nique, the SZ and the lensing one as well as the analysis of the dynamics of cluster
galaxies. The lensing technique makes use of the relativistic phenomenon of dis-
tortion of light paths due to the presence of a mass distribution, providing a direct
measure of the gravitational well. Two techniques, the X–ray and the SZ, makes
use of the physical processes taking place in the gas of the ICM. Understanding
the physics of this medium appears therefore a fundamental issue for a correct
estimate of the mass content in galaxy clusters. Another widely used technique
makes use of the motion of the galaxies within the cluster, which is regulated by
the gravitational potential of the system. This technique is not discussed here, as
it is the main topic of this thesis, and has been presented in more detail in section
3.7.

If it is not possible to rely on sufficient telescope time, one must consider a
robust definition of cluster mass proxies, that have minimal and well understood
scatter across the full mass and redshift ranges of interest. If gravity is the dominant
process in the assembly of galaxy clusters, the latter are self–similar, and simple
scaling relations hold between basic cluster properties and the total mass (Kaiser,
1986). Baryonic processes take place in galaxy clusters, therefore the study of the
scaling relations turn out to be useful not only for cosmology, but also for the
comprehension of the physics of the ICM. We summarize the most widely used
proxies in optical and X–ray observations, and refer the reader to Giodini et al.
(2013) for a recent review.

4.2.1 Gravitational lensing

Overdensities in the matter distribution perturb the trajectories of photons that
are emitted by distant galaxies. The effect reminds the distortion of images when
observed through a piece of glass with a spatially varying index of refraction: the
images look distorted and magnified. This phenomenon, called gravitational lensing,
is a relativistic effect and is used to determine the projected mass of clusters. In
fact the deflection is due to the presence of the mass distribution of the cluster,
which is called the lens, therefore it is a direct measure of the gravitational potential,
independent of the dynamical state of the system. For a recent review on the use
of gravitational lensing to derive the mass profile of galaxy clusters we refer the
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reader to Hoekstra et al. (2013).
When the deflection of light is large, multiple images of the same source are ob-

served, and are useful to constrain the mass profile of the inner regions of clusters.
This is the case of the so–called strong lensing regime. By this effect it is possible to
put strong constraints to mass models in the inner regions of galaxy clusters, but
it rarely allows model-independent reconstructions of mass profiles (Bartelmann
et al., 2013).

If the deflection is not enough to produce multiple images, it is still possible
to detect the coherent alignment of the images produced by the distortion of the
light paths. We will refer to this case as weak lensing (WL) regime. The ellipticity
imprinted by the presence of the mass distribution along the line of sight is charac-
terised by the local strength of the gravitational field or shear γ, and by the scaled
surface mass density or convergence κ, which is related to the surface density of the
lens (the cluster) via the following relation:

κ =
Σ

Σcrit
(4.2)

where Σcrit is the following term:

Σcrit =
c2

4πG

Ds

DlDls
(4.3)

Ds being the angular distance to the source background galaxy, Dl the angular
distance to the lens (cluster), and Dls the angular distance from the lens to the
source galaxy. Hence, the lensing signal depends on the redshifts of both the lenses
and the sources. It is convenient to define the reduced shear g:

g =
γ

1 − κ
(4.4)

The effect of the gravitational distortion of light rays is to map a circular source into
an ellipse having axis ratio (1 − |g|)/(1 + |g|) and to magnify it by a factor μ =
(1 − κ)−2(1 − |g|2)−1. As first shown by Kaiser and Squires (1993), it is possible to
express the surface density in terms of the observable shear, allowing to reconstruct
the mass distribution.

Rarely galaxies are circular. Elliptical shapes are in fact observed both due to
their intrinsic shape or because we usually do not see disc galaxies face–on (van
Uitert et al., 2012). Therefore to detect the ellipticity due to the WL effect, it is
customary to average over many background sources. This statistical approach
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implies that weak lensing has an intrinsic resolution set by the number density of
galaxies. Typically (Bartelmann et al., 2013) a number density n ≃ 30 arcmin−2

and a total number N ≃ 10 galaxies are needed, resulting in a resolution of θ >√
N/nπ ≃ 20′′.

The first step to reconstruct the mass profile via the WL technique is the de-
tection of background galaxies, whose ellipticity is measured after correcting for
smearing due to the point–spread function (PSF) (see, e.g. Clowe and Schneider,
2002). The measured shear must then be converted into a measurement for the con-
vergence κ. In Fig. 4.1 a map of κ is shown as solid dark contours. Both the shear

Figure 4.1: Left panel: Gray-scale I-band VLT image of the interacting galaxy cluster
1E 0657–558 used to measure the galaxy shapes for the background galaxies. Black
contours are the weak–lensing mass reconstruction, solid contours referring to pos-
itive mass, dashed contours for negative mass, and the dash-dotted contour for the
zero-mass level, which is set such that the mean mass at the edge of the image
is zero. Right panel: Gray-scale Chandra X-ray image with the same weak-lensing
contours as in left panel. [After Clowe et al. (2004)].

and the convergence are combinations of various second derivatives of the surface
potential, and therefore the Fourier transform of the shear can be converted into
the Fourier transform of κ by multiplying for the appropriate wavenumbers. In this
kind of measurements what is actually measured from the background galaxies is
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the reduced shear g. An iterative approach is therefore adopted, by assuming an
initial κ map (usually κ = 0). g is corrected with this map to γ which is then trans-
formed to a new κ map, and so on (Seitz and Schneider, 1995). This procedure
typically converges in a few iterations (Clowe et al., 2004), providing an estimate
of κ in the field relative to the level of κ at the edge of the image, which is un-
known. For this reason, in this way it is not possible to measure the mass of the
cluster reliably. It is therefore customary to assume a surface mass model for the
cluster and convert this into a κ profile, and then into a profile for the reduced
shear, which is compared with the azimuthally averaged shear profile from the
data, as shown in Fig. 4.2. Different mass profiles are usually considered, typically

Figure 4.2: Reduced shear profile for the interacting galaxy cluster 1E 0657–558.
The reduced shear profiles for the best–fit NFW (solid line), King (dashed line),
and SIS (dash-dotted line) models are shown. [After Clowe et al. (2004)].

an NFW model (Navarro et al., 1996), the singular isothermal sphere (SIS) and a
King model (Binney and Tremaine, 1987), and then integrated to obtain the surface
density profile.

The dominant source of uncertainty in WL mass reconstruction is the interpre-
tation of the signal, due to the fact that clusters are neither round nor described by
simple parametric density profiles. The bias in the mass estimate can be reliably
quantified using numerical simulations. Another source of uncertainty lies in the
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fact that WL is sensitive to all matter along the line–of–sight. The structures present
along the path of light therefore are a source of noise, which must be taken into
account.

The WL analysis relies on the knowledge of the distance of the lens and the
sources. Therefore the uncertainty on source redshifts is a dominant source of bias.
Thanks to deep, multi-wavelength, wide-angle surveys the redshifts of intermedi-
ate redshift clusters are now well measured. However, in the case of high–redshift
clusters, the lack of source redshift information is still a concern. Furthermore,
high redshift clusters have a small number of galaxies behind them, making the
WL analysis more difficult and noisy.

4.2.2 X–Ray Emission

Galaxy clusters are very bright extended X–ray sources, with luminosities of the
order 1043 − 1045erg s−1, the emission being due to the hot plasma of the ICM
(Sarazin, 1988; Rosati et al., 2002).

The X–ray emission is the result of the interactions between ions and elec-
trons. In particular the spectrum is characterized by a continuum due to the
bremsstrahlung process and the recombination, while emission lines are due to the
de–excitations of bound electrons (see, e.g. Boehringer and Werner, 2009). Collision
rates of this plasma are proportional to the gas temperature and ion and electron
densities, therefore the observed spectrum depends at the same time on the plasma
temperature and on its chemical composition. Since the ICM is a plasma charac-
terised by a thermal equilibrium, ionisation and recombination rates are balanced
for every element. At the typical temperatures of the ICM, around 107 − 108K,
the emission is dominated by the bremsstrahlung process, while the line emission
becomes dominant for temperatures around 104 − 105K.

The power radiated is given by the following relation (see, e.g. Borgani, 2008):

dLX

dV
∝

(
ρgas

μmp

)2

Λ(T) (4.5)

where ρgas is the gas density, μ is the mean molecular weight of the gas and mp is

the proton mass and, for the bremsstrahlung emission, Λ(T) ∝ T1/2. Due to the
dependence on the square of the density, the X–ray emission allows to investigate
the inner regions of the clusters.

If a cluster is relaxed, we can assume the ICM to be in hydrostatic equilibrium.
If we also assume spherical symmetry, the pressure p of the ICM can be related to
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the density of the gas ρgas via the following expression:

dp

dr
= −GM(< r)ρgas

r2
(4.6)

M being the mass within the radial distance r. Using the equation of ideal gas the
mass profile reads:

M(< r) = − kTr

Gμmp

(
d log ρgas

d log r
+

d log T

d log r

)
(4.7)

To recover the total mass profile from X–ray observables, different methods have
been developed. For a detailed review we refer the reader to Ettori (2013).

One possibility is the use of parametric functions to model the gas density and
temperature radial profiles through the observed surface brightness and spectral
temperature data. In order to use the X–ray surface brightness, the latter must be
PSF-corrected and deprojected into 3D emission measure profiles (see, e.g. Croston
et al., 2006), and its peak is taken as the center of the cluster. Using the emissivity
profile the gas density profile is obtained, accounting also for the weak dependence
of the emissivity on temperature. Temperature profiles are modelled with a hot
diffuse gas including metal emission lines (see, e.g. Smith et al., 2005a), then are
deconvolved from the PSF blurring and either deprojected into 3D physical profiles
or modelled with a functional form in 3D projected on the plane of the sky to
reproduce the observed quantities. The total mass profile is then obtained through
the hydrostatic equilibrium equation (HEE), eq. (4.7) (see, e.g. Pointecouteau et al.,
2005; Nagai et al., 2007).

Another possibility is the widely used approach first described in Ettori et al.
(2002a) and adopted in both observational (Morandi et al., 2007; Donnarumma
et al., 2011; Ettori et al., 2010) and simulated datasets (Rasia et al., 2006; Meneghetti
et al., 2010). A functional form, like an NFW profile, is adopted to describe the
DM density profile, defined as the total mass minus the gas mass. The gas density
profile is estimated from the geometrical deprojection (see, e.g. Ettori et al., 2002a)
of either the measured X–ray surface brightness or the estimated normalization of
the thermal model fitted in the spectral analysis. Once the mass and gas density
profiles are known, the temperature profile, either 3D or projected, is obtained by
inverting the hydrostatic equilibrium equation (eq. 4.7). The mass profile parame-
ters are constrained by minimizing a χ2 statistic comparing the temperature profile
with the observed temperature measurements obtained in the spectral analysis.
In Fig. 4.3 the best–fit results of the gas density and temperature profiles for an
observed cluster are shown.
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It is also possible to solve the HEE in a non–parametric way, by using the best–
fit results on gas temperature and density of the deprojected spectra (see,e.g. Voigt
and Fabian, 2006; Nulsen et al., 2010).

Figure 4.3: Results of the two analysis adopted for the mass reconstruction of
Abell1835 by Ettori et al. (2010). Top panel: gas density profile as obtained from
the deprojection of the surface brightness profile compared to the one recovered
from the deprojection of the normalizations of the thermal model in the spectral
analysis. Bottom panel: observed temperature profile with overplotted the best–fit
model. [After Ettori et al. (2010)].

Comparing the mass estimates from X–ray analysis to those obtained via WL
analysis (see Fig. 4.4), it appears that X–ray masses within R500 are on average
10% lower than the WL ones (Mahdavi et al., 2013), although the bias seems to
disappears when restricting the analysis to cool–clusters only, characterized by a
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more relaxed dynamical state. On the other hand, non–cool–core clusters present
a bias up to 20%. Tensions between X–ray and WL masses in disturbed objects,
and agreement in relaxed objects, have been reported also in other works (see, e.g.
Böhringer et al., 2010; Donnarumma et al., 2011; Umetsu et al., 2012). Non–cool–
core clusters have proven to be useful laboratories also when comparing the results
from dynamical analysis. In Ettori et al. (2002b,a) the discrepancies were largest
between X–ray and dynamical analyses in such non–relaxed clusters, highlighting
the importance of the assumption of equilibrium in both kinds of analyses. Galaxy
clusters are in fact dynamically young systems, and mergers can cause departures
from equilibrium, as well as perturbing the geometry of the systems, making the
spherical symmetry assumption not appropriate (Limousin et al., 2013).

4.2.3 Thermal Sunyaev–Zel’dovich effect

When photons of the CMB travel through a galaxy cluster, there is a small probabil-
ity for them of being inverse–Compton scattered by electrons of the ICM. Since the
CMB temperature has a temperature T ≃ 2.73K, while the ICM can have tempera-
tures of order 108K, if such scatter occurs, the CMB photons increase their energy.
This can be detected as a change in the CMB intensity and spectrum.

In the regime Eγ ≪ mec
2, the energy variation of a single photon is:

∆E

E
≃ kBTe

mec2
(4.8)

This photon will experience a number of collision given by N = neσT, where ne

is the electron’s number density and σT the Thompson cross–section. The overall
effect is quantified by the Comptonisation parameter y, given by:

y =
∫

los
ne

kBTe

mec2
σTdl (4.9)

where the integral is along the line of sight. The observable effect in the CMB
spectrum is the decrease of intensity at frequencies lower than νSZ ≃ 218GHz, and
an increase for frequencies higher than νSZ, as shown in Fig. 4.5 (see, e.g. Carlstrom
et al., 2002). It is possible to demonstrate (see Carlstrom et al., 2002, and references
therein) that the y parameter is related to the change in the CMB temperature TCMB

given by:
∆T

TCMB
= f (x)y (4.10)
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Figure 4.4: Comparison between X–ray and WL mass determinations from re-
cent work based on both observed (Zhang et al., 2010; Mahdavi et al., 2013) and
simulated (Meneghetti et al., 2010; Rasia et al., 2012) clusters. [After Ettori (2013)].

where f (x) is a function of the dimensionless frequency x = hν/kBTCMB:

f (x) =

(
x

ex + 1

ex − 1
− 4

)
(1 + δSZ(x, Te)) (4.11)

where δSZ(x, Te) is the relativistic correction to the frequency dependence. It is
important to notice that the temperature change does not depend on redshift. This
is one of the most important features of the SZ effect, making the use of it an
important tool for the study of the high redshift Universe.

The Compton y–parameter integrated within a region centered on a cluster is
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Figure 4.5: CMB spectrum, undistorted (dashed line) and distorted by the
Sunyaev-Zel’dovich effect (solid line). In order to illustrate the effect, the SZE
distortion shown is for a fictional cluster 1000 times more massive than a typical
massive galaxy cluster. [After Carlstrom et al. (2002)].

called the Y parameter:

Y =
∫

ydΩ =
1

D2
A

kBσT

mec2

∫
dl
∫

neTedA =
1

D2
A

σT

mec2

∫
P(r)dV (4.12)

where DA is the angular distance and A is the area perpendicular to the line of
sight. The volume integral of pressure P is the total thermal energy content of
the ICM, which should directly trace the depth of the potential well (Carlstrom
et al., 2002). Therefore a tight scaling relation between the SZ signal Y and cluster
mass is expected. The quantity YD2

A is called intrinsic y-parameter, as it removes
the distance dependence on the previous equation. A strong correlation is indeed
found between the SZ signal and the mass of clusters, as shown in fig. 4.6 (see, e.g.
Rines et al., 2010; Marrone et al., 2012).

The main problem with SZ is that the signal is intrinsically very faint. The first
generation of SZ telescopes needed long time of observation to get a significant SZ
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Figure 4.6: Comparison between the integrated SZ parameter, corrected for the
angular distance term, and the cluster mass or the velocity dispersion of 15 from
HeCS (Rines et al., 2010). Left panels: SZ data vs. M100 estimated from the virial
theorem (top) and the caustic mass profile (bottom). Solid and open points refer
to data obtained from different works (see Rines et al., 2010, for more details). The
dashed line shows the slope of the scaling predicted from numerical simulations:
YSZ ∝ M1.6

100 following the results by Motl et al. (2005), while the solid line is the
fit of the data.Right panels: SZ data vs. projected velocity dispersions measured for
galaxies inside the caustics and (top) inside r100 estimated from the caustic mass
profile and (bottom) inside the Abell radius 2.14Mpc. The dashed line shows the
scaling predicted from simulations YSZ ∝ M1.6

100 following the results by Motl et al.

(2005) along with the scaling σ ∝ M0.33 by Evrard et al. (2008). The solid line shows
the fit to the data. [After Rines et al. (2010)].
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detection of a single known cluster. The new generation, like Planck, SPT, ACT and
SZA, are much more sensitive (AMI Consortium et al., 2012). Another limitation
of the SZ effect is its capacity of measuring only the projected mass along the line
of sight, therefore the estimate is contaminated by the small objects in background
and foreground that are not resolved in other wavelengths and can bias the mass
estimate.

4.2.4 Cluster mass proxies

For optical studies the most used mass proxies are the richness, N, and the lumi-
nosity, L. Both N and L are measured in a certain magnitude range and out to a
certain radius from the cluster center, summing up, respectively, the number and
the luminosities of galaxies.

If mc is the magnitude below which the sample is complete, the total cluster
luminosity is obtained by extrapolating the contribution of the galaxies with m >

mc. The number of galaxies dn of a given luminosity is given by dn = Φ(l)dl,
where l is the luminosity and Φ(l) is the so–called luminosity function (LF). The
most widely used one is the Schechter LF (Schechter, 1976):

Φ(l)dl = Φ∗(l/l∗)α exp(−l/l∗)d(l/l∗) (4.13)

where l is the galaxy luminosity, l∗ and Φ∗ are the characteristic luminosity and
number density, respectively, and α is the faint-end power-law exponent. In order
to obtain the total luminosity within a given distance from the center, the luminos-
ity density profile must be determined, then Abel inverted via the equivalent of eq.
(3.45) and finally extrapolated to the desired radius with a suitable fitting function,
like an NFW profile (eq. 3.31).

In the same way one can proceed to obtain the richness within a given distance
from the center. Although conceptually equal, when extrapolating the richness one
must be careful, since faint galaxies are much more numerous than bright galaxies,
while their integrated contribution to the total luminosity is only marginal.

Another commonly used method to obtain an estimate of the mass of a cluster
using optical data is the use of the virial theorem (Zwicky, 1933) applied to the
observed velocities of cluster galaxy members. The virial theorem, eq. 3.26, can be
recast in the following form:

M =
3π

G
Pσ2

v Rh (4.14)

where G is the gravitational constant, σv is the line-of-sight velocity dispersion
of cluster galaxies, and Rh is the harmonic mean radius of the projected spatial
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distribution of cluster galaxies:

Rh =
n(n − 1)

2 ∑i>j R−1
ij

(4.15)

where Rij is the projected distance between two cluster galaxies, and n is the num-
ber of cluster galaxies. The factor 3π corrects for projection effects, while P is the
so–called surface pressure term, needed when the entire cluster is not included in the
observed sample (see,e.g. Girardi et al., 1998).

This method is based on the assumption that galaxies are distributed in the
same way the mass is. Differences in the two distributions have been observed
(see, e.g. Biviano et al., 2002). If the analysis is restricted to the ETG, the two
profiles are very similar and the resulting mass estimate more reliable, provided
that the clusters are not too far from dynamical equilibrium (Biviano et al., 2006;
Hicks et al., 2006; Johnson et al., 2006).

As for the X–ray observations, a relation between the luminosity LX and the
temperature T of the ICM is known (see, e.g. Markevitch, 1998; Arnaud and Evrard,
1999; Maughan, 2007): LX ∝ TαE(z) where E(z) is given by eq. (2.18), and accord-
ing to Pratt et al. (2009), α ≃ 2.5 − 3 at cluster scales and even steeper and with
large scatter for galaxy groups (Osmond and Ponman, 2004). If the assumption of
hydrostatic equilibrium holds, then the relation linking the mass and the temper-
ature is M ∝ T3/2E−1(z). Combining these two relations, we obtain the relations
between the X–ray luminosity and the mass (see Fig. 4.7):

M ∝ L3/4E−7/4(z) (4.16)

Kravtsov et al. (2006) introduced a new quantity, the YX parameter, that demon-
strated to be a very robust mass proxy being directly proportional to the cluster
thermal energy. It is defined as follows:

YX = MgasTX (4.17)

Its scaling relation with M500 is characterized by an intrinsic scatter of only 5 − 7%
at fixed YX, regardless of the dynamical state of the cluster. This robustness has
been confirmed in a number of recent works, both on the observational side (see,
e.g. Arnaud et al., 2007; Pratt et al., 2009) and on the theoretical one (see, e.g.
Rasia et al., 2011; Fabjan et al., 2011) by means of cosmological hydrodynamical
simulations.
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In order to reduce the scatter in the relations between total mass and observ-
ables, combinations of X–ray observables are sought (Ettori et al., 2012; Ettori, 2013):

M ∝ LαM
β
gasTγ (4.18)

For the particular conditions and values of the parameters we refer the reader to
Ettori (2013). In such paper it is shown that the use of this generalized scaling
relation allows to reliably recover the total mass of galaxy clusters, with a typical
error of order ∼ 5%.

Figure 4.7: Relation between cluster mass and X–ray luminosity for a sample of
106 galaxy clusters. [After Reiprich and Böhringer (2002)].

The relations between the mass and the proxy can be biased because of some
physical processes taking place in clusters. A way to recognize the presence and
the effect of these phenomena is the comparison among different proxies. An in-
teresting example is the comparison between the optical information coming from
the velocity dispersion σv of galaxies and the X–ray luminosity LX of the cluster.
It is known that there is a population of clusters for which the mass derived from
LX is smaller than the one obtained from σv. These are called X-ray underluminous
clusters. On the other hand there is also a population whose mass estimated from
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LX is bigger than the mass from σv. These are called X–ray bright clusters (Bower
et al., 1997; Popesso et al., 2007). These differences shed light on the dynamical
stage of these systems. The X–ray underluminous clusters are thought to be at an
early stage of their dynamical evolution, while the opposite holds for the X–ray
bright systems, where dynamical processes lead an important role. In fact dynam-
ical friction reduces the velocity of galaxies and tidal interactions transfer part of
the kinetic energy of galaxies to internal energy.

4.3 Properties of cluster galaxy populations

The study of the properties of cluster galaxies and the relations with their envi-
ronment as well as with redshift allows to constrain the mechanisms of galaxy
formation and evolution.

In galaxy clusters, galaxies with different morphologies are present. In partic-
ular, most of cluster galaxies are early type galaxies (ETGs), at odds with what is
observed in the field, where late type galaxies (LTGs) constitute the most common
type of galaxies (Whitmore et al., 1993; Postman et al., 2005). Even inside the clus-
ter itself, different morphological types are distributed differently: the fractions of
Es and S0s increase with increasing local density and the fractions of S and Irr de-
crease (see, e.g. Postman and Geller, 1984). This is the so-called morphology–density
relation (MDR in the following). Because of the correlation between density and
distance from cluster center, the MDR can be thought as a relation between the
morphological type and the distance from the cluster center. The MDR seems to
be in place already at z ≃ 1 in massive clusters, as shown by Postman et al. (2005);
Smith et al. (2005b), while in low–mass, irregular clusters the MDR does not appear
to hold at redshift above ∼ 0.5 (Dressler et al., 1997).

Another characteristic feature of galaxies is the color. It has been observed that
cluster galaxies tend to lie in a narrow region of the color vs. magnitude diagram
(see, e.g. Bower et al., 1992). This is the so–called color–magnitude relation (CMR
in the following) and appears to be in place even at high redshift (e.g. Andreon
et al., 2008; Strazzullo et al., 2013). The scatter of the CMR appears to increase with
clustercentric distance and at the faint end of the LF (Smail et al., 1998; Pimbblet
et al., 2006). The CMR varies with redshift, the red galaxy fraction decreasing
at increasing redshift. This effect is known as Butcher–Oemler effect after the first
authors who noticed it (Butcher and Oemler, 1978).

Galaxies in clusters present a difference also in their luminosity with respect
to field galaxies. Compared to the LF of field galaxies, the LF of cluster galax-
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ies presents a steeper faint-end slope, a brighter characteristic magnitude, with a
plateau at intermediate luminosities, as shown in Fig. 4.8 for the Coma cluster.
Within the cluster, the LF depends on the clustercentric distance. In fact the ratio
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Figure 4.8: The LF of the Coma galaxy cluster. It is possible to notice the ex-
cess of bright galaxies relative to a Schechter function (dashed line), a steep faint-
end upturn and a plateau at intermediate luminosities. The solid line is a Gaus-
sian+Schechter fit to the data. [After Lobo et al. (1997)].

between the number of bright giants and faint dwarfs increases toward the center,
an effect known as luminosity segregation (Capelato et al., 1980). This issue is how-
ever still debated and studied. We refer the reader to Biviano (2008) and references
therein for a more comprehensive treatment of the topic.

A peculiarity of the luminosity in the clusters is the presence of the BCG and
the ICL. The former is the acronym for Brightest Cluster Galaxy. The BCG is a much
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bigger and luminous galaxy with respect to the other ETGs (Bernardi et al., 2007)
and it resides close to the bottom of the potential well of the cluster (Ramella et al.,
2007). BCG luminosity correlates with the cluster’s one (Lin and Mohr, 2004) and
its main axis results aligned to the cluster’s main axis (Struble, 1987).

The Intra–Cluster Light (ICL) consists of stars which are bound to the cluster
potential and it is usually found in form of diffuse light around the BCG. It has
low surface brightness with smooth distribution around the BCG, although it can
extend to large radii. The identification of the ICL in observations is a difficult
task, since the typical surface brightness of the ICL is less than 1% of the dark sky
and can be contaminated by foreground and background galaxies. Moreover, the
separation between the light of the BCG and the ICL is somewhat arbitrary, making
the comparison between theory and observations Cui et al. (2013) difficult. ICL
results useful to understand the dynamical evolution of clusters since it provides
a direct probe of the past galaxy encounters that stripped the stars (see, e.g. Da
Rocha et al., 2008).

4.4 Enviromental processes in clusters

Galaxy clusters are invaluable laboratories for studying astrophysical processes
affecting the evolutionary properties of galaxies. Several are in fact the phenom-
ena taking place in clusters and that are responsible for the phenomenology we
presented in the previous sections. Below we summarize the most important ones,
namely dynamical friction, collisions, tidal interactions and ram-pressure stripping.

A galaxy moving in a medium composed by DM particles feels a drag that slows
it down due to gravitational interactions between DM particles and the galaxy
itself. This force, first described by Chandrasekhar (1943), is the dynamical friction.
DM particles tend to fall in the wake produced by the moving galaxy, creating an
excess of density of matter behind the galaxy. This excess attracts gravitationally
the galaxy, resulting in a drag force that is opposed to the motion of the galaxy,
according to the following relation:

d

dt
~vorb = −4πG2 ln(Λ)Mgalρ(< vorb)

~vorb

v3
orb

(4.19)

where ρ(< vorb) is the density of background particles with velocities less than
the orbital velocity vorb of the galaxy, Mgal is the mass of the galaxy and Λ is the
Coulomb logarithm (see, e.g. Chandrasekhar, 1943; White, 1976).
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The effect of dynamical friction is that of making the galaxy lose energy and
angular momentum, therefore sinking toward the center of the cluster and eventu-
ally merging with the central galaxy, on a time–scale (Boylan-Kolchin et al., 2008),
in units of dynamical time, given by

τd f

τdyn
∝

Mcl

Mgal
(4.20)

where Mcl is the cluster mass. From the definition of dynamical time (eq. 2.3) the
time–scale of the dynamical friction is

τd f ∝
v3

gal

Mgalρ
(4.21)

Therefore dynamical friction results to be more effective in higher density environ-
ments and for more massive galaxies and not very effective when the galaxy moves
fast.

Galaxies whose orbits intersect or get close to one another can collide or even
merge. This causes an important morphological modification and trigger a starbust
event (see, e.e. Fujita, 1998; Moore et al., 1999). The gas in the galaxies can be
consumed during such event of star formation, or expelled from the system (Duc
and Bournaud, 2008). The timescale for a galaxy to experience a collision event is
given by

τc ∝
1

νr2
galvgal

(4.22)

where vgal is the relative velocity between the two galaxies, rgal is the galaxy radius,
and ν is the galaxy number density (Gnedin, 2003). From the previous equation
collisions appear to be more frequent in higher density environments and between
larger galaxies. When the two galaxies get close enough and with low relative
velocity, they can even merge, on a timescale given by

τm ∝
σ3

v

νr2
galσ

2
gal

(4.23)

where σv is the cluster velocity dispersion and σgal the internal velocity dispersion
of the galaxy (Mamon, 1992).

The gradients of the gravitational potential in the clusters cause galaxies to be
stripped by tidal forces. The external parts are progressively removed, starting
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from the DM halos, while the baryonic part is more resistant as it is more compact.
Tidal stripping is more effective for galaxies moving at lower velocities (Diemand
et al., 2004) since they spend more time in the inner regions where tidal interac-
tions are stronger. Tidal stripping and dynamical friction are related. On one hand,
dynamical friction becomes ineffective when tidal mass-losses become important
(Faltenbacher and Mathews, 2007)), because dynamical friction is more effective
for more massive objects (see eq. 4.20). On the other hand, tidal mass–losses
are enhanced by dynamical friction, since they are more effective in slow–moving
galaxies than their fast–moving counterparts (Diemand et al., 2004). Hence, dy-
namical friction is likely to be more effective at the first orbit of a galaxy while tidal
disruption may take several orbits.

The gas component in cluster galaxy is subject to a wind due to its motion
relative to the ICM. This wind exerts a pressure that can remove the gas in the
galaxy if it is sufficiently strong to overcome the gravity of the galaxy:

ρICMv2
gal > α

GMgalρgas

Rgal
(4.24)

where ρICM is the ICM gas density, Rgal is the projected galaxy radius in the direc-
tion transverse to the galaxy motion, ρgas is the 3–D galaxy gas density profile and α
is a term that depends on the precise shape of the gas and mass profile of the galaxy
(McCarthy et al., 2008). This process is known as ram pressure stripping (Gunn and
Gott, 1972). There have been theoretical studies (see, e.g. McCarthy et al., 2008, and
references therein) supporting this scenario, and recently observational evidences
have been provided by the long tails of gas observed in some cluster galaxies (see,
e.g. Crowl et al., 2005). As evident from eq. (4.24), ram pressure is more effective
for a low–mass galaxy moving at high velocity in a dense ICM.

The processes so far discussed consume the gas reservoir of galaxies, causing
galaxies halting the star formation. This process is called starvation and could
partially account for the different properties of cluster and field galaxies (Balogh
et al., 2000). Fig. 4.9 shows a scheme of the clustercentric radius over which each
of the listed physical mechanisms may be effective at fully halting star formation
or transforming the visual morphology of a radially infalling galaxy.

Studying the redshift evolution of the SFR, it appears that the typical SFR in
galaxies was much higher at high redshift (z ≃ 3) than at z = 0 (Arnouts et al.,
2005). In particular the most massive galaxies, mainly giant ellipticals located in
galaxy clusters, are characterized by old stellar populations, being observed al-
ready in place by z ≃ 2. In contrast, faint field galaxies present a younger stellar
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Figure 4.9: Clustercentric radius over which each of the listed physical mecha-
nisms may be effective at fully halting star formation or transforming the visual
morphology of a radially infalling galaxy. The solid and dashed lines are the esti-
mates relative to two clusters, as indicated in the figure. Arrows indicate the virial
radius of each cluster. [Modified from Moran et al. (2007)].

population (see, e.g. Treu et al., 2005; Bundy et al., 2006). This is the so–called down-
sizing scenario (Cowie et al., 1996; Gavazzi et al., 1996). The downsizing process
seems at odds with the hierarchical formation of structures. Actually, the above de-
scribed scenario is relative to the formation of the main stellar population, which
does not necessarily coincide with the assembly of galaxy stellar mass (Fontanot
et al., 2009). Feedback plays a fundamental role in the mass–dependent evolution
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of galaxies. In fact mergers in high mass galaxies stimulate both star formation and
active galactic nuclei (AGN). The latter are the result of gas accretion onto super-
massive black holes. The effect of the AGN is to heat the inter–galactic medium
(IGM) sufficiently to prevent it from condensing and forming stars, regulating the
star formation rates of massive galaxies and suppressing overcooling in groups and
clusters (e.g. Planelles et al., 2013).
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5

Mass, velocity anisotropy and pseudo phase

space density profiles of Abell 2142

5.1 Introduction

As discussed in Sect. 4.2, two methods that are widely used to infer the mass pro-
file of galaxy clusters are the X-ray and the lensing techniques. These two methods
have anyway some limitations. In the case of X-ray technique, the limitation comes
from the usual assumption that the plasma of the cluster is in hydrostatic equi-
librium, and the cluster approximately spherically symmetric (Ettori et al., 2002a)
with no important recent merger activity (Böhringer et al., 2010). As for the lensing
technique, its limitation is that it allows to compute the projected mass only, and
this includes all the line-of-sight mass contributions. The complementarity of the
different techniques is a great advantage to reliably constrain the mass of a cluster.

In this Thesis another kind of information is used, coming from the kinematics
of the galaxies belonging to the observed cluster. The motion takes place in a 6-
dimensional phase space, but the observations are able to capture only 3 of these
dimensions, namely 2 for the position and one for the line of sight (los, hereafter)
velocity. This is one of the most important limitations of the mass estimate through
the observation of the kinematics of galaxies. To overcome this issue, most methods
assume spherical symmetry.

In this section, the results of the study of the galaxy cluster Abell 2142 (A2142
hereafter), a rich galaxy cluster at z ∼ 0.09, are presented. The great amount of
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galaxy members allows us to derive the total mass profile, testing different mod-
els, as well as performing dynamical analyses deriving the anisotropy of the orbits
of galaxies, and computing the pseudo phase space density profile and the β − γ
relation. This cluster shows evidence of some recent mergers. In fact, the X-ray
emission appears to have an elliptical morphology elongated in the Northwest-
Southeast direction (Markevitch et al., 2000; Akamatsu et al., 2011). The merging
scenario is supported also by the presence of substructures of galaxies lying along
the direction of the cluster elongation, as found in the SZ maps by Umetsu et al.
(2009), lensing analysis by Okabe and Umetsu (2008) and analysis of the distri-
bution of los velocities of Owers et al. (2011). However, analysing XMM-Newton
images to investigate the cold fronts of A2142, Rossetti et al. (2013) exclude the
mergers to be major ones, but rather of an intermediate degree.

As discussed in Sect. 3.6, the self-similarity of the DM-only haloes seems to be
broken, and substituted with the pseudo phase space density Q(r) = ρ/σ3, where
ρ is the total matter density profile and σ is the 3D velocity dispersion of the tracers
of the gravitational potential (Taylor and Navarro, 2001; Ludlow et al., 2010). The
use of the radial velocity dispersion instead of the total one has proven to be a valid
and robust alternative for the computation of the PPSD, in this case called Qr(r).
The link between these two formulations of the PPSD is constrained by the velocity
anisotropy (hereafter, anisotropy) of the system, which plays a non trivial role in
shaping the structure of a system. The density profile and the anisotropy profile
are in fact found to correlate. A best-fit relation is provided by Hansen and Moore
(2006) and Ludlow et al. (2011), linking the logarithmic slope of the density profile
γ = d ln ρ/d ln r and the anisotropy β(r). Hereafter we will refer to anisotropy

as β or the equivalent σr/σt = 1/
√

1 − β2. We also denote the relation between
anisotropy and logarithmic slope of the density profile as the β − γ relation.

Throughout this section, we adopt a ΛCDM cosmology with H0 = 70 km s−1 Mpc−1,
Ω0 = 0.3, ΩΛ = 0.7. The virial quantities are computed at radius r200, where r∆

is the radius within which the mean density is ∆ times the critical density of the
Universe.

5.2 The data

The photometric information has been obtained from the SDSS DR7 database1,
searching for the galaxies having 238.983 < RA < 240.183, 26.633 < DEC < 27.834

1http://cas.sdss.org/astro/en/tools/chart/chart.asp
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and petroMagr′ < 22. The spectroscopic information has been provided by Owers
et al. (2011). The full sample is composed of 1631 galaxies with both photometric
and spectroscopic information. The cluster center is assumed to coincide with the
X-ray center provided by De Grandi and Molendi (2002).

Two algorithms have been used to select cluster members, those of den Hartog
and Katgert (1996) and Mamon et al. (2013), hereafter dHK and clean, respectively.
Both identify cluster members on the basis of their location in projected phase-
space2: R, vrest, using the spectroscopic values for the velocities. We adopt the
membership determination of dHK, resulting in 996 members. In fact, the clean
algorithm removes one more galaxy but it is very close to the distribution of se-
lected members and it seems unlikely to be an interloper. Anyway, this galaxy is at
≈ 3 Mpc from the cluster center, which should make no difference in the analysis
here. Fig. 5.1 shows the location of galaxies in the projected phase-space diagram
and the members identification of the two methods.

The cluster mean redshift and line-of-sight velocity dispersion, as well as their
uncertainties, have been computed using the biweight estimator (Beers et al., 1990)
on the redshifts and rest frame velocities of the members: 〈z〉 = 0.08999 ± 0.00013,
σlos = 1193+58

−61 km/s.

5.2.1 The color identification

We identify the Red Sequence iteratively by fitting the g′− r′ vs. r′ color-magnitude
relation of galaxies with r′ < 19.5 and g′ − r′ > 0.7, then selecting galaxies within
±2σ of the found sequence (where σ is the dispersion around the best fit relation).
We refer to the cluster members within ±2σ of the Red Sequence, and those above
this range, as Red Sequence galaxies, and to the cluster members more than 2σ
below the Red Sequence as blue galaxies, as shown in Fig. 5.2.

5.2.2 Removal of substructures

Owers et al. (2011) found some substructures in A2142, probably groups that have
been recently accreted by the cluster. These substructures can alter the kinematics
of the system since they still retain memory of the infall kinematics. For this reason,
we compute the mass profile of the system excluding the galaxies belonging to
these substructures. In particular we consider the largest substructures in this

2R is the projected radial distance from the cluster center (we assume spherical symmetry in the
dynamical analyses). The rest-frame velocity is defined as v = c (z − z) / (1 + z). The mean cluster
redshift z is re-defined at each new iteration of the membership selection, until convergence.
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Figure 5.1: Distribution of the galaxies of Abell 2142 in the projected phase-space
of projected radii and line-of-sight rest-frame velocities. Cluster members, as iden-
tified by both dHK and clean algorithms, are denoted by blue filled dots. The red
diamond is the galaxy identified as member by dHK but not by the clean algorithm.
The purple solid lines are the caustic, described in Sect. 5.3. The vertical dashed
line locates the virial radius of the concordance model (see Sect. 5.4).

cluster, namely S2, S3 and S6, following the nomenclature of Owers et al. (2011).
Therefore, we remove galaxies inside circles, the centers and radii of which are
reported in Table 5.1.

5.2.3 The samples

Some of the techniques (described in Sect. 5.3) that we use to compute the mass
profile of the cluster rely upon the assumption of equilibrium of the galaxy pop-
ulation. Red galaxies are likely an older cluster population than blue galaxies,
probably closer to dynamical equilibrium (e.g. Moss and Dickens, 1977; van der
Marel et al., 2000). For this reason, red galaxies constitute a better sample for the
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Figure 5.2: Color magnitude diagram g′ − r′ vs. r′. Red (blue) points are relative
to red (blue) member galaxies. Black points are galaxies, for which we have pho-
tometric information, that are not identified as members. The red solid line locates
the Red Sequence.

application of such techniques. Among red galaxies, those outside substructures
(see Sect. 5.2.2) are the most likely to be in dynamical equilibrium. We therefore
use these galaxies for the determination of the mass profile.

The three samples that will be used hereafter are as follows. We will refer to the
sample made of all the member galaxies to as the ALL sample. BLUE will be the
sample made of blue galaxies. RED will be the sample made of red galaxies not
belonging to the substructures described in Sect. 5.2.2. See Table 5.2 for a summary
of the number of galaxies belonging to each sample.

5.3 The techniques

The methods we use, described hereafter, all assume spherical symmetry.
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Table 5.1: Coordinates, with respect to the cluster center, and radii of the areas of
the three main substructures, as found by Owers et al. (2011)

xc [Mpc] yc [Mpc] r [Mpc]

S2 0.600 0.763 0.467

S3 2.007 1.567 0.700

S6 2.327 –0.180 0.812

Sample ntot n200

ALL 996 706

RED 564 447

BLUE 278 162

Table 5.2: For each sample, the total number of member galaxies and the number
of member galaxies within r200, the latter being the value of the concordance model
(see Sect. 5.4), are shown.

5.3.1 Methods

DK: The dispersion kurtosis technique, hereafter shortened to DK, first intro-
duced by Łokas (2002), relies upon the joint fit of the los velocity dispersion
and kurtosis profiles of the cluster galaxies. In fact, fitting only the los velocity
dispersion profile to the theoretical relation coming from the projection (see
Mamon and Łokas, 2005b for single integral formulae for the case of simple
anisotropy profiles) of the Jeans equation (Binney and Tremaine, 1987) does
not lift the intrinsic degeneracy between mass profile and anisotropy profile
determinations (as Łokas and Mamon, 2003 showed for the Coma cluster).
This technique assumes spherical symmetry and dynamical equilibrium of
the system, and it allows to estimate the virial mass, the scale radius and the
value of the cluster velocity anisotropy, considered as a constant with radius.

MAMPOSSt: The MAMPOSSt technique, recently developed by Mamon et al.
(2013), performs a maximum likelihood fit of the distribution of galaxies in
projected phase space, assuming models for the mass profile, the anisotropy
profile, the projected number density profile and the 3D velocity distribution.
In particular, for our analysis we have used an NFW model for the mass and
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the projected number density profiles, either a simplified Tiret (Tiret et al.,
2007) profile or a constant value for the anisotropy profile and a Gaussian
profile for the 3D velocity distribution. As in the DK method, to apply MAM-
POSSt we must assume spherical symmetry and dynamical equilibrium of
the system. By this method we estimate the virial mass, the scale radius of
the mass density profile and the value of anisotropy of the tracers.

Caustic: The caustic technique, introduced by Diaferio and Geller (1997), is dif-
ferent from the other two methods, as it does not require dynamical equi-
librium, but only spherical symmetry. Hence, this technique also provides
the mass distribution beyond the virial radius. In projected phase space,
member galaxies tend to gather together. Measuring the velocity ampli-
tude A of the galaxy distribution gives information about the escape ve-
locity of the system. In turn, the escape velocity is related to the poten-
tial, hence the mass profile: M(r) = M(r0) + (1/G)

∫ r
r0
A2(s)Fβ(s) ds, where

Fβ(r) = −2πG (3 − β)/(2 − β) r2ρ(r)/Φ(r) (Diaferio, 1999).

Since the DK and MAMPOSSt techniques make use of the assumption of dy-
namical equilibrium of the system, the use of the RED sample allows a more correct
application of those techniques, since this sample is likely to be the most relaxed
sample. On the other hand, we use the ALL sample for the caustic technique.

5.3.2 Practical implementation

To compute the parameter values with the MAMPOSSt technique, we performed a
Markov Chain Monte Carlo (MCMC) procedure (see, e.g., Lewis and Bridle, 2002),
using the public CosmoMC code of A. Lewis.3 In MCMC, the parameter space is
sampled following a procedure that compares the posterior (likelihood times prior)
of a point in this space with that of the previous point, and decides or not to accept
the new point following a criterion that depends on the two posteriors (we use the
Metropolis-Hastings algorithm). The next point is chosen at random from a hy-
perellipsoidal gaussian distribution centered on the current point. This procedure
ensures that the final density of points in the parameter space is proportional to the
posterior probability. MCMC then returns probability distributions as a function of
a single parameter, or for several parameters together. Here, the errors on a single
parameter are computed by marginalising the posterior probabilities over the other
two free parameters.

3http://cosmologist.info/cosmomc
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For the caustic technique, we use the ALL sample, since the equilibrium of the
sample is not required, also considering the galaxies beyond the virial radius. To
apply the caustic technique, the Fβ parameter (Diaferio, 1999) must be chosen.
The choice of the parameter is quite arbitrary, hence we have tested 3 different
choices: the constant value 0.5, as first suggested in Diaferio (1999), the constant
value 0.7 as suggested in Serra et al. (2011), and the profile described in Biviano
and Girardi (2003). When using the value 0.7 and the profile of Biviano and Girardi
(2003), the estimated virial masses are much greater than those obtained with the
other techniques relying on the dynamics of galaxies as well as the results coming
from the X-ray and the weak lensing analysis (see below). Therefore we decided
to consider only the caustic technique with Fβ = 0.5 (the same value has been
recently adopted by Geller et al., 2013). We adopt r0 = 0, which relieves us from
the choice of a mass at some finite radius r0. Once we have computed the mass
profile, we fit it with a NFW profile to obtain the estimate of the scale radius.

5.3.3 The scale radius of galaxy distribution

The NFW scale radius of the galaxy distribution is used as input for the DK and
MAMPOSSt analyses, therefore it has been computed for the RED sample. The
number density profile of the spectroscopic sample is affected by the incomplete-
ness issue. We have corrected it using the completeness profile provided by Owers
et al. (2011).

We have divided the cluster in radial bins and counted the galaxies inside each
bin. In the bins where galaxies belonging to substructures have been removed and
where the presence of a bright star in the cluster field caused a lack of detection,
the number density of galaxies is artificially reduced. In order to take this into
account, we have assumed the galaxy density in the affected regions to be equal to
the mean density in the rest of the bin.

The RED galaxy number density profile is well fit by a projected NFW profile
(Łokas and Mamon, 2001) with scale radius equal to 0.95 ± 0.14 Mpc. The fit is an
MLE fit performed on all RED members with χ2

reduced = 0.83. The ALL and BLUE
samples are less concentrated, the values of the scale radius being 1.84 ± 0.25Mpc
for the ALL sample with χ2

reduced = 2.08 and 16± 11Mpc for the BLUE sample with

χ2
reduced = 0.88. In Fig. 5.3 the surface number density profiles for the different

samples are shown. The scale radius for the BLUE sample is very high and is due
to a very flat distribution of these galaxies.
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Figure 5.3: Surface number density profiles for the ALL, RED and BLUE samples,
along with their best-fit projected NFW profiles. The dashed vertical line locates
the virial radius of the concordance model (see Sect. 5.4).

5.4 Mass profiles

5.4.1 Mass profiles obtained from the different methods

We have used the velocities of the galaxies within r200 to compute the mass profile
of A2142. In Fig. 5.4, the velocity dispersion profiles are shown, along with the
best-fit profiles coming from the DK and MAMPOSSt analyses.

The DK technique assumes a constant value for the anisotropy, while we have
chosen 2 profiles for the anisotropy model in MAMPOSSt, a constant value and
a Tiret profile β(r) = β0 + (β∞ − β0) r/(r + ranis). Here, we set β0 = 0 (inner
isotropy) and set ranis to the scale radius of the galaxy number density profile. In
Sect. 5.5, we compute the anisotropy profile for the RED sample and find that it is
not compatible with a Tiret profile, therefore we made the a posteriori decision not
to consider the result of MAMPOSSt with a Tiret profile.

We have also tried to assume different mass profiles and velocity anisotropy
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models in MAMPOSSt, namely a Burkert (Burkert, 1995), a Hernquist (Hernquist,
1990) and a Softened Isothermal Sphere profile (Geller et al., 1999), all with both
constant and Tiret profile for the anisotropy. The resulting estimates of virial mass
and mass profile concentration are very similar to the case of NFW mass profile
with constant anisotropy, with differences of the order of very few percent. We
therefore only considered the NFW model for the mass profile.

The results are summarised in Tab. 5.3. Fig. 5.5 shows the detailed results of
our MAMPOSSt MCMC analysis.

In Fig. 5.6, we show the mass profiles obtained from the different methods,
along with the virial values of mass and radius. The results coming from the X-
ray (Akamatsu et al., 2011) and weak lensing (Umetsu et al., 2009, WL hereafter)
analysis are also shown.

Figure 5.4: Velocity dispersion profiles for the ALL, RED and BLUE sample. For
the RED sample we also show the best-fit profile coming from the DK analysis
(black), and the profile computed after the MAMPOSSt analysis (dashed red).
The dashed vertical line locates the virial radius of the concordance model (see
Sect. 5.4).
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Figure 5.5: Parameter space and probability distribution functions for the virial
radius, mass profile scale radius and velocity anisotropy, as found by MAMPOSSt.
The coloured regions are the 1,2,3 σ confidence regions, while the red stars and the
red arrows locate the best-fit values. These are based upon an MCMC analysis with
6 chains of 40 000 elements each, with the first 5000 elements of each chain removed
(this is the burn-in phase that is sensitive to the starting point of the chain). The
priors were flat within the range of each panel, and zero elsewhere.

5.4.2 Concordance mass profile

We now combine the constraints from the different mass modelling methods to
build a concordance mass profile. We attempt to give the same weight to kinematics,
X-ray and WL in the final estimate of the parameters, so we now compute a single
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Figure 5.6: Mass profiles computed from the different methods. The black dash-
dotted line and the triangle with error bars refer to DK technique, the dashed
blue line and blue square to the caustic method, the solid red line and red point
to MAMPOSSt. The symbols with error bars refer to the virial mass and radius.
The purple diamond with error bars is the result of the X-ray analysis, while the
orange star is the one coming from weak lensing analysis. The shaded area is the
1σ confidence region of the mass profile according to the MAMPOSSt results.

value coming from kinematical techniques for the scale radius, and one for the
virial radius. For this we take the mean of the values rs and r200 of the different
methods, inversely weighting by the symmetrized errors. Since the measures of
these two quantities by the various methods are not independent (as they are based

on essentially the same data-sets) we multiply the error on the average by
√

3, 3
being the number of values used to compute the average. In fact, the usual error
on the weighted average decreases like the square root of the number of values.

The mean value and its error are shown as solid and dashed lines in the left
panels of Fig. 5.7. In the right panels of Fig. 5.7, we plot the values of scale
and virial radius obtained from the three independent methods: kinematics, X-
ray and WL. The average error-weighted value and its error, this time computed
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Figure 5.7: Virial (top panels) and scale (bottom panels) radius for all the methods.
Left panels: blue diamonds are values obtained from the caustic technique, red
ones for MAMPOSSt, and black ones for DK (from left to right, respectively). The
average value and its error are the solid and dashed lines, respectively. See the text
for the computation of the error. Right panels: values obtained from the kinematical
analysis, X-ray and WL (from left to right, respectively). The average value and its
error are the solid and dashed lines, respectively.

without multiplication factor (since the three measures are independent), are r200 =
2.16 ± 0.08, rs = 0.54 ± 0.07.

5.5 Velocity anisotropy profiles

The Jeans equation can be solved for β(r) to obtain information about the anisotropy
of the orbits of the system. The Jeans equation contains 4 unknown quantities,
therefore to solve it we need other 3 relations, namely the Abell integrals to relate
the projected number density and velocity dispersion to the real ones and assume a
mass profile for the cluster. This anisotropy inversion was first solved by Binney and
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Mamon (1982), but several other authors have provided simpler algorithms. We
follow the approach of Solanes and Salvador-Sole (1990), and we test the results
by comparing them with those obtained following the approach of Dejonghe and
Merritt (1992). Once the mass profile is specified, this procedure is fully non para-
metric. In fact, instead of fitting the number density profile, we bin and smooth it
with the LOWESS technique (see, e.g. Gebhardt et al., 1994). We then obtain the 3D
number density profile by using Abel’s equation (e.g., Binney and Mamon, 1982).
In the same way, we smooth the binned σlos profile. This procedure requires the
solution of integrals up to infinity. Mamon et al. (2010) showed that a 3 σ clipping
removes all the interlopers beyond 19 virial radii. Therefore, an extrapolation up
to such a distance is enough to solve the integrals having infinity as limit of in-
tegration. We use 30 Mpc as the maximum radius of integration, and extrapolate
the smoothed profiles up to this limit. A factor 2 change of the upper limit of
integration does not affect our results in a significant way.

The result of the anisotropy inversion is shown in Fig. 5.8. The confidence
levels are obtained by estimating two error contributions. One contribution comes
from the uncertainties in the number density and σlos profiles. Since the number
density profile is affected by much smaller uncertainties than the σlos profile, we
only consider the error contribution from the latter. It is virtually impossible to
propagate the errors on the observed σlos through the Jeans inversion equations to
infer the uncertainties on the β profile solution. We then proceed to estimate these
uncertainties the other way round. We modify the β profile in two different ways: 1)
β(r) → β(r) + S + T r, and 2) β(r) → J β(r) +Y, using a wide grid of values for the
constants, respectively (S, T) and (J, Y). Using the mass and anisotropy profiles,
it is then possible to determine σr(r) and then the σlos profile (e.g., Mamon and
Łokas, 2005b). The range of acceptable β profiles is determined by a χ2 comparison
of the resulting σlos profiles with the observed one.

In addition, another source of uncertainty on the β profile solution comes from
the uncertainty in the mass profile. This is estimated by running the anisotropy
inversion for four different mass profiles corresponding to the combination of al-
lowed values of virial and scale radii within 1 σ. The profiles obtained modifying
the mass profile (not shown) lie within the confidence interval of the main result,
hence the confidence interval represents well the uncertainty on the anisotropy
profile.

The ALL sample β(r) depends weakly on radius: the innermost region is com-
patible with isotropy, while the anisotropy is increasingly radial at large radii. The
RED sample is compatible with isotropy at almost all radii. The difference be-
tween the two samples is almost entirely due to the BLUE galaxies, the anisotropy
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Figure 5.8: Velocity anisotropy profile for the ALL, RED and BLUE samples. The
solid line is the result of the inversion of the Jeans equation, while the dotted lines
are the 1σ confidence intervals. The vertical dashed line locates the virial radius.

of which is compatible with isotropy in the center, then becomes rapidly radially
anisotropic and finally flattens at radii > 1Mpc.

As a check, we compare the values of β obtained from the anisotropy inversion
with the best-fit results of DK and MAMPOSSt. In these techniques, we assumed a
constant value of the anisotropy for the RED sample, which appears to be a good
assumption given the results of β after the inversion. The value estimated by both
DK and MAMPOSSt is β = 0.0, consistent within the uncertainties with the β
profile shown in Fig. 5.8.

5.6 Q(r) and β − γ relations

We can take advantage of the results just found for the galaxy populations of A2142
to test the PPSD profile and the relation linking the logarithmic slope of the density
profile and the anisotropy β(r).
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The mass is dominated by dark matter, which is not an observable, so we use the
galaxies as tracers of the total matter dynamics. We thus consider the radial velocity
dispersion and velocity anisotropy that we measured (using our concordance mass
profile) for the galaxies (see Sect. 5.5), instead of those of the dominant DM, which
we cannot directly measure. We still have a choice for the density profile in both
the PPSD and the β − γ relation: it could be either the total density profile or the
density profile of the tracer for which we compute the radial velocity dispersion
and the anisotropy.

5.6.1 Use of the total matter density profile

We begin by adopting the total density profile ρ(r). We compute both the PPSD
profile Q(r) = ρ/σ3 and its radial counterpart Qr(r) = ρ/σ3

r . In the top panels
of Fig. 5.9, we show, for the different tracers (ALL, RED, BLUE), the radial profile
of Q(r) (left panels) and Qr(r) (right panels) within the virial radius. In order to
compute the errors on the best-fit slope parameters, we have assumed the number
of independent Q and Qr values to be the same as those of the observed velocity
dispersion profile (see Fig. 5.4).

Assuming a power-law behaviour of the PPSD profile, as suggested by Dehnen
and McLaughlin (2005), we fit the profiles of both Q(r) and Qr(r) in two ways:
either keeping the exponent fixed to the values found for haloes in ΛCDM simu-
lations by Dehnen and McLaughlin (2005) or considering it as a free parameter. In
Table 5.4 the results of such fits are shown. The Q(r) profile for the RED sample
is in good agreement with the r−1.84 relation by Dehnen and McLaughlin (2005),
the latter being almost always within the confidence interval of our results. The
fit of the profile with a linear relation in the log-log plane is compatible with the
theoretical value −1.84 within 1.7 σ. On the other hand, for the BLUE sample, the
slope of the PPSD is steeper than the theoretical expectation.

The Qr(r) profiles of all 3 samples are in good agreement with the relation that
Dehnen and McLaughlin (2005) found for simulated ΛCDM haloes, r−1.92. The
better agreement for the BLUE sample is due to the relatively larger uncertainty
that we have on σr with respect to σ, because of the large uncertainties that affect
β(r). The profile for the RED sample is in agreement with the theoretical relation
within 0.3 σ.

Ludlow et al. (2010) warn against fitting the pseudo phase space density profile
outside the scale radius, because of the upturn they find in the Q(r) profile in the
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Q(r) Qr(r)

A B A B

[M⊙ Mpc−3 km−3 s3] [M⊙ Mpc−3 km−3 s3]

Fixed slope

ALL 5534 ± 314 −1.84 25071 ± 3341 −1.92

RED 7727 ± 391 −1.84 38484 ± 5622 −1.92

BLUE 1753 ± 294 −1.84 3998 ± 1084 −1.92

Free slope

ALL 6342 ± 367 −2.28 ± 0.11 29175 ± 4223 −2.27 ± 0.24

RED 8034 ± 411 −2.00 ± 0.09 38881 ± 5665 −1.77 ± 0.23

BLUE 3121 ± 793 −2.97 ± 0.50 5413 ± 1810 −2.60 ± 0.67

Q(r) GAL Qr(r) GAL

A B A B

[10−9 Mpc−3 km−3 s3] [10−9Mpc−3 km−3 s3]

Fixed slope

ALL 6.82 ± 0.68 −1.84 28.49 ± 5.37 −1.92

RED 3.62 ± 0.46 −1.84 13.23 ± 3.21 −1.92

BLUE 0.98 ± 0.23 −1.84 1.30 ± 0.47 −1.92

Free slope

ALL 10.19 ± 25.60 −1.09 ± 0.15 46.94 ± 7.34 −1.09 ± 0.26

RED 8.21 ± 17.01 −0.90 ± 0.14 40.48 ± 6.69 −0.71 ± 0.25

BLUE 0.88 ± 1.81 −0.90 ± 0.61 1.52 ± 0.55 −0.52 ± 0.74

Table 5.4: The PPSD profile is parametrized as Q(r) = A · rB. The first panel at
the top shows the results of the fit of Q(r) and Qr(r) for the different samples,
both when keeping fixed the exponent to the values suggested by Dehnen and
McLaughlin (2005), and when considering the exponent as a free parameter. In the
bottom panel, the one identified by Q(r) GAL and Qr(r) GAL, the same quantities
are shown, but referred to the PPSD computed using the galaxy number density
profile instead of the total matter density profile.
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Figure 5.9: Radial profiles of Q (left columns) and Qr (right columns) within the
virial radius, and the 1 σ confidence regions (shaded areas), for different types of
member tracers: green for the ALL sample (top panels), red for the RED sam-
ple (middle panels) and blue for the BLUE sample. The shaded areas represent
the propagation of the errors associated with ρ, σ and σr. The dashed lines are
the power-law relations Q(r) ∝ r−1.84 and Qr(r) ∝ r−1.92 found by Dehnen and
McLaughlin (2005) on numerically simulated haloes. The vertical dotted lines lo-
cate the virial radius of the concordance model (see Sect. 5.4).

outer regions. However, for our 3 samples, none of the Q(r) and Qr(r) profiles
show significant curvature in log-log space.

In Fig. 5.10, we show the β(r)− γ(r) relation. The β − γ relation of the ALL
sample matches well that found by Hansen and Moore (2006) on single-component
dissipationless simulations (cosmological and academic). However, the β − γ re-
lation for the RED sample shows curvature, with lower values of β at the steeper
slopes (larger radii) than found in simulations by Hansen and Moore (2006).
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Figure 5.10: Velocity anisotropy versus logarithmic slope of the total density pro-
file. The samples are ALL galaxies (top), RED (middle) and BLUE galaxies (bottom
panel). The dashed areas are the 1 σ confidence regions. The β − γ relation found
by Hansen and Moore (2006) for single-component dissipationless simulations is
shown as the dotted lines. The vertical dot-dashed line locates the value of γ rela-
tive to the virial radius.

5.6.2 Use of the tracer density profile

We now repeat our analyses of the PPSD and the β− γ relations, replacing the total
mass density with the number density of the tracer of the sample.

In Fig 5.11, we show the PPSD computed using the galaxy number density
profile instead of the total matter density one. For all three samples, both Q(r)
and Qr(r) remain as power laws, but are considerably shallower than the relation
found by Dehnen and McLaughlin (2005) on simulated ΛCDM halos.

In Fig. 5.12, we show the β − γ relation computed using the galaxy number
density profile instead of the total matter density one. The behaviour does not
change significantly from the case of the β − γ relation computed using the total
matter density profile: the global shapes of the profiles are similar but the BLUE
sample now presents a noisier profile, while ALL and RED profiles are shifted
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Figure 5.11: Same as Fig. 5.9, but now using the radial profiles of galaxy number
density instead of total mass density to estimate the PPSD.

toward higher values of γ, reflecting the shallower trend of the galaxy number
density profile with respect to the matter density one.

5.7 Conclusions and Discussion

We have computed the mass and velocity anisotropy profiles of A2142, a nearby
(z = 0.09) cluster, using the kinematics of cluster galaxies. After a membership
algorithm was applied, we considered the sample made of all members (ALL sam-
ple), as well as two subsamples, consisting in blue member galaxies (BLUE sample)
and in red member galaxies that do not belong to substructures (RED sample).

We have made use of three methods based on the kinematics of galaxies in
spherical clusters: DK, MAMPOSSt and Caustic (see Sect. 5.3). The mass profiles,
as well as the virial values of the mass and the radius, are consistent among the
different methods, and in agreement with the results coming from the X-ray (Aka-
matsu et al., 2011) and the weak lensing (Umetsu et al., 2009) analyses. Serra et al.
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Figure 5.12: Same as Fig. 5.10, but now using the radial profiles of galaxy number
density of the three samples instead of total mass density to estimate the slope.

(2011) found that the caustic technique tends to overestimate the value of mass
in the central region of a cluster. Our results appear consistent with this finding,
the caustic mass profile increasing more rapidly with radius in the inner part with
respect to the profiles coming from DK and MAMPOSSt.

Munari et al. (2013a) report the scaling relation between the virial mass of clus-
ters and the velocity dispersion of the member galaxies within the virial sphere.
Using the most realistic (“AGN”) hydrodynamical simulation at their disposal, they
find σ1D = 1177 [h(z) M200/1015M⊙]0.364 for the galaxies within the virial sphere,

where σ1D is the total 3D velocity dispersion within r200, divided by
√

3. The
analysis was carried out in the 6D phase space, hence is immune to projection
effects. Nevertheless, because of the statistical nature of the relation they find, it
provides a relation which is likely to hold for real, observed systems in a relaxed
state. As a test, we check the consistency of the velocity dispersion – mass relation
found by Munari et al. (2013a) with our findings for A2142. The values of virial
mass obtained with this relation are as follows: 1.42 × 1015M⊙ for the ALL sample,
1.07 × 1015M⊙ for the RED sample and 2.50 × 1015M⊙ for the BLUE sample. The
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values obtained for the ALL and RED samples are in agreement, within the uncer-
tainties, with the concordance value of the mass of A2142. This seems to indicate
that RED cluster members are in, or very close to, equilibrium. The large differ-
ence obtained for the BLUE cluster members warns against using the blue galaxy
los velocity dispersion as a proxy for the cluster mass.

A glance at Table 5.3 indicates that our different estimates of the mass concen-
trations are bimodal: the caustic and weak lensing have values ≃ 4, while those for
the DK, MAMPOSSt and X-ray methods are < 3.

Could these lower mass concentrations found by methods based upon internal
kinematics be a sign that A2142 is out of dynamical equilibrium? The substruc-
tures found by Owers et al. (2011) and the results by Rossetti et al. (2013) on the
importance of the mergers undergone by A2142 suggest that full relaxation is to
be excluded. On the other hand, the agreement on the virial radius among the
different method and with the results from X-ray and lensing (the latter of which
does not require equilibrium) suggests that A2142 is not far from dynamical equi-
librium. This allows us to assume a concordance model for the mass profile, with
M200 = (1.25 ± 0.13)× 1015M⊙ and c = 4.0 ± 0.5.

Previous studies based on the kinematics of galaxies in clusters have shown
that galaxy populations have similar concentrations to those of the total matter,
or slightly smaller, blue galaxies being instead much less concentrated (see, e.g.,
Biviano and Girardi, 2003; Katgert et al., 2004). On the other hand, Biviano and
Poggianti (2009) found in the ENACS clusters that the red galaxy population has a
concentration that is as much as 1.7 times lower than that of the total matter density
profile. Here, we find that the scale radius for the RED galaxy number density
profile (0.95 kpc) is 1.8 times greater than that of the total mass density profile
from our concordance model, which is in agreement with the ENACS result.

The scale radius of the BLUE population in Abell 2142 appears unusually high,
leading to a concentration (using our concordance virial radius) of 0.16 (best) or 0.39
(+1 σ), which are much lower than expected from previous studies. Blue galaxies
within the virial cones of clusters are more prone to projection effects than red
galaxies: Mahajan et al. (2011) analysed clusters and their member galaxies in the
SDSS, using los velocities and cosmological simulations to quantify the projection
effects. They conclude that 44 ± 2% of galaxies with recent (or ongoing) starbursts
that are within the virial cone are outside the virial sphere. Since galaxies with
recent star formation have blue colours, our BLUE sample includes this recent-
starburst subsample, plus perhaps some more galaxies with more moderate recent
star formation. Moreover, an analysis of cosmological simulations by Mamon et al.
(2010) indicates that there is a high cosmic variance in the fraction of interlopers
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within the DM particles inside the virial cone. This suggests that the unusually
low concentration of the blue galaxy sample could be a sign of an unusually high
level of velocity interlopers with low rest frame velocities in front and behind Abell
2142.

Wojtak and Łokas (2010) found a virial radius that corresponds to r200 = 2.15+0.10
−0.12

Mpc, in excellent agreement with our different estimates of the virial radius (Table
5.3). On the other hand, they find a scale radius rs = 1.0+0.3

−0.2Mpc not compatible
with our value of the concordance model, although in agreement with the results
of the DK, MAMPOSSt and X-ray analyses. Note that Wojtak and Łokas assumed
that the DM and galaxy scale radii were equal. Such an unverified assumption may
have biased high their scale radius for the mass distribution. On the other hand,
the values of the DM scale radii that we found from DK and MAMPOSSt (0.93
and 0.83 Mpc, respectively, see Table 5.3) are quite close to that of the RED galaxy
population used as the tracer (0.95 Mpc).

The parameters describing the mass profile are then used to invert the Jeans
equation and compute the velocity anisotropy for the three different samples con-
sidered. Despite large uncertainties, the β(r) profile for the full set of cluster mem-
bers is compatible with isotropy, becoming weakly radially anisotropic in the outer
regions. The behaviour of the RED sample is different. Although compatible within
1σ with isotropy at all radii within r200, it has a marginally significant decreasing
slope, starting slightly radially anisotropic in the center and becoming slightly tan-
gentially anisotropic at large radii. The difference between the β(r) profiles for
the ALL sample and the RED sample is mainly due to the behaviour of the BLUE
sample, which shows radial anisotropy at all radii except in the center where it is
isotropic.

The velocity anisotropy profile for the ALL sample in the center is compatible
with that found by Wojtak and Łokas (2010). In the outer part, at ≃ 3Mpc, the
value of σr/σθ found by Wojtak and Łokas (2010) is higher and 1.4σ distant from
ours. Analysing a stacked sample of 107 ENACS clusters, Biviano and Katgert
(2004) found the orbits of ellipticals and S0s (hence red) galaxies to be compatible
with isotropy and those of early and late-type spirals to have radial anisotropy.
The velocity anisotropy profile for our BLUE sample presents a behaviour that lies
in between the profiles found in Biviano and Katgert for the early spirals and the
late spirals together with emission line galaxies, suggesting agreement between
their findings and ours. The anisotropy profiles we found for the ALL sample
appears to be consistent with that measured in simulated ΛCDM haloes by Lemze
et al. (2012). The scatter in the anisotropy profiles is considerable in the above-
mentioned papers and this reflects the variety of configurations of galaxy clusters.
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In this sense, the behaviour of the anisotropy of A2142 does not present strong
deviations from the general trend.

With the information obtained on A2142, we are able to test some theoretical
relations regarding the interplay between the mass distribution and the internal
kinematics of a cluster. We investigated the radial profile of the pseudo phase
space density Q(r), as well as its radial counterpart Qr(r). When we consider the
total density profile to compute Q and Qr, we find that the profiles for A2142 are
weakly consistent with the theoretical expectations (Dehnen and McLaughlin, 2005;
Ludlow et al., 2010) when considering the ALL sample, but a good agreement is
observed in the RED sample. This strengthens the scenario of blue galaxies being a
population of galaxies recently fallen into clusters, that have had no time to reach
an equilibrium configuration yet, or are heavily contaminated by interlopers.

Biviano et al. (2013) have performed a similar analysis on MACS1206, a cluster
at z = 0.44. They find a Q(r) profile with a slope for the blue galaxies in agreement
with the predictions of Dehnen and McLaughlin (2005). We speculate that this
different behaviour might provide a hint on the dynamical history of clusters. In
fact, a cluster that has undergone the phase of violent relaxation only recently
might present a population of blue galaxies in equilibrium. On the other hand,
a cluster that has undergone the violent relaxation phase since long, should have
had time to transform its blue galaxies into red ones. Therefore the blue galaxy
population would be mainly composed of only recently accreted galaxies, hence
not in dynamical equilibrium.

We estimate the PPSD profile of the total matter making the assumption that
the galaxy velocity dispersion is a good proxy for the total matter dynamics. When
we replace the total mass density by the number density of the tracer for which we
compute the velocity dispersion, the PPSDs are shallower power-laws than those
found by Dehnen and McLaughlin (2005) in simulated ΛCDM haloes.

The anisotropy configuration of the internal kinematics reflects the formation
history of the cluster. Therefore we expect a relation between the anisotropy and
the potential of the cluster. A relation linking the β(r) profile and γ(r), the loga-
rithmic slope of the potential, has been analysed and compared to the theoretical
results provided by Hansen and Moore (2006), resulting in a weak agreement. A
correlation between the β and γ appears to hold out to γ ≃ −2.3 in the RED sample,
corresponding to a radial distance ≃ 0.5 r200 ≃ 1 Mpc. Interestingly, cluster-mass
simulated ΛCDM haloes also follow the Hansen and Moore relation out to slopes
of γ ≈ −2.3 but not beyond (see Fig. 17 of Lemze et al., 2012). Our considerations
do not change when we compute the β − γ relation using the logarithmic slope of
the number density profile of galaxies instead of the total matter density profile.
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This brings the question of what is more relevant for galaxy clusters: the total
mass density or the tracer number density? One can argue that the PPSDs found in
ΛCDM haloes are the consequence of the global gravitational potential (hence total
mass profile), violent relaxation, or more generally the mass assembly of clusters
through a combination of a several major mergers and numerous minor mergers.
Alternatively, one can argue that it is inconsistent to associate the total density
profile to the tracer velocity dispersion profile and that one should instead associate
the tracer density profile to the tracer velocity dispersion profile. Similar questions
arise for the origin of the NFW model for density profiles on one hand and of the
β − γ relation on the other.

For giant elliptical galaxies, the NFW model must apply to the DM component,
while the observed tracer applies for β − γ. Indeed, Mamon and Łokas (2005a)
have shown that the observed inner aperture velocity dispersions are too high to
be matched by a single NFW component (while the addition of a stellar Sérsic
component matches the observations). Moreover, in the elliptical galaxy remnants
of binary mergers of spiral galaxies made of stars, gas and DM, the β − γ relation
is well obeyed by the stellar component (Mamon et al., 2006), but not well with the
slope of the total mass density profile (Mamon, unpublished).

So it surprising that the PPSDs that we measure for Abell 2142 match better the
relations found in ΛCDM haloes when the total density profile is used instead of
the density profile of the tracer used to estimate the velocity dispersion. Perhaps
one should not expect clusters to behave as elliptical galaxies. Indeed, in compar-
ison with the progenitors of elliptical galaxies, the progenitors of clusters (galaxy
groups) have deeper gravitational potentials that more effectively prevent cooling
and dissipative contraction of gas. Moreover, cluster-mass halos grow relatively
faster at z = 0 than galaxy-mass halos (e.g., van den Bosch, 2002), hence are built
by more recent mergers than elliptical galaxies, and these mergers, some major, will
mix the inner regions. For this reason, the baryonic and DM mass distributions in
clusters are closer than in elliptical galaxies.

At all radii, the RED galaxy sample shows somewhat lower β for given γ (mea-
sured with total mass density) than found in simulated haloes. This slight mis-
match might be due to the use of galaxies as tracers of the internal kinematics of
the cluster. In fact, it has been shown (see e.g. Ludlow et al., 2010; Munari et al.,
2013a) that galaxies and DM may have different kinematics. Furthermore, the
above-mentioned relations have been derived using DM-only simulations, there-
fore the effect of the presence of baryons is not taken into account. Finally, the
β − γ relation may vary from cluster to cluster (Ludlow et al., 2011).

Before reaching any conclusion, we must keep in mind that the present theo-
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retical studies are lacking the influence of the baryonic physics, as well as the dy-
namical processes acting on galaxies but not on DM particles. This might induce
the differences when comparing the theoretical predictions with the observational
results.

When we will have a better control on these properties, the PPSD might provide
a powerful tool for the study of structure formation. As an example, the PPSD of
the blue galaxies in A2142 appears very different from that found for the blue
galaxies in another cluster, MACS J1206.2–0847 at z = 0.44 (Biviano et al., 2013).
This discrepancy suggests interesting perspectives for the comprehension of the
formation of galaxy clusters.
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6

The relation between velocity dispersion and

mass in simulated clusters of galaxies

6.1 Introduction

The methods to measure the mass of galaxy clusters are described in Sect. 4.2. In
the same section, it was pointed out that methods like the X-ray or WL can only
be applied to clusters for which high quality data are available, like in the case of
A2142 whose mass has been derived by means of the kinematics of its member
galaxies in Sect. 5.4.2.

When these high quality data are not available, it is still possible to infer clus-
ter mass using the mass proxies. In this thesis the velocity dispersion of member
galaxies is considered. It is crucial to understand whether a cluster velocity disper-
sion measured on its member galaxies is a reliable proxy for its mass. Calibration
of such scaling relation can be based on detailed multi-wavelength observations
of control samples of galaxy clusters. On the other hand, detailed cosmological
simulations are quite useful to calibrate such scaling relations independently from
possible observational systematic effects (e.g. Borgani and Kravtsov, 2011, and ref-
erences therein).

The implementation of baryonic physics can play a fundamental role in these
analysis. In principle, since galaxies are nearly collisionless tracers of the gravita-
tional potential, one expects velocity dispersion to be more robust than X-ray and
SZ mass proxies against the effects induced by the presence of baryons and by their
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thermal history.

Using a set of cluster-sized halos extracted from a ΛCDM cosmological simu-
lation, Biviano et al. (2006) analysed the reliability of the velocity dispersion as a
mass proxy. They considered both DM particles and simulated galaxies as tracers
of the gravitational potential of their host halo. They found that in typical observa-
tional situations, the use of the line-of-sight velocity dispersion, σlos, allows a more
precise cluster mass estimation than the use of the virial theorem. They used only
one kind of simulation without exploring different baryonic physics.

Evrard et al. (2008) analysed the σ200 −M200 relation using several cosmological

simulations, and showed that it is close to the virial scaling relation σ200 ∝ M1/3
200

across a broad range of halo masses, redshifts, and cosmological models. When
looking at simulated galaxies, some studies found that they show a significant,
albeit small, velocity bias with respect to DM particles (Diemand et al., 2004; Fal-
tenbacher et al., 2005; Faltenbacher and Diemand, 2006; Faltenbacher and Mathews,
2007; Lau et al., 2010). These studies agreed that the amplitude of the velocity bias,
i.e. the ratio between the velocity dispersions of simulated galaxies and DM par-
ticles, is not larger than ≈ 10%, but disagreed on whether galaxies are positively
(velocity bias > 1) or negatively (velocity bias < 1) biased. The disagreement is
unlikely to come from resolution issues (Evrard et al., 2008). Other effects are more
important in affecting the value of the bias, such as the distance from the clus-
ter centre (Diemand et al., 2004; Gill et al., 2004), baryon dissipation and redshift
dependence (Lau et al., 2010).

The way simulated galaxies are selected also has an important effect on the
amount of velocity bias. By selecting simulated galaxies in stellar mass, rather than
in total mass, the velocity bias is strongly reduced or even suppressed (Faltenbacher
and Diemand, 2006; Lau et al., 2010). A similar effect is seen when the selection
of simulated galaxies is based on their total mass at the moment of infall, which
is found to be proportional to the stellar mass (Faltenbacher and Diemand, 2006;
Lau et al., 2010; Wetzel and White, 2010). The proportionality between total and
stellar mass of a galaxy is lost after the galaxy enters the cluster, because the DM
halo is more easily stripped than the stellar component by the cluster tidal forces
(Diemand et al., 2004; Boylan-Kolchin et al., 2008; Lau et al., 2010; Wetzel and
White, 2010). Observational evidence for tidal stripping of cluster galaxies has
been obtained from lensing studies (Natarajan et al., 2002; Limousin et al., 2007).
Tidal stripping is more effective for galaxies moving at lower velocities (Diemand
et al., 2004). When the mass removed from a simulated galaxy by tidal stripping is
such that the galaxy mass drops below the resolution limit, the galaxy is effectively
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tidally disrupted. As the galaxies that are disrupted are preferentially those of
smaller velocities, the survivers will display on average a larger velocity dispersion
than DM particles, i.e. a positive velocity bias (Faltenbacher and Diemand, 2006).

Another important process is dynamical friction (Chandrasekhar, 1943; Esquivel
and Fuchs, 2007), which removes energy from a galaxy orbit, bringing it closer to
the cluster centre, and slowing down its velocity (e.g. Boylan-Kolchin et al., 2008;
Wetzel and White, 2010). If a sufficient number of galaxies is slowed down by
dynamical friction and survive both tidal disruption and merging with the central
galaxy, dynamical friction might cause a negative velocity bias in the cluster galaxy
population.

All the processes discussed so far alter the dynamics of tracers like galaxies,
providing a source of uncertainty in the aforementioned relation linking mass and
velocity dispersion. With that comes the need of further investigations about this
topic, also because of the different results found in the literature on the velocity
bias of cluster galaxies. The aim of the study presented in this chapter is to charac-
terise the relation between the velocity dispersion and the mass of simulated halos
spanning a wide mass range, from ∼ 1013M⊙ to & 1015M⊙, at different redshifts
(from z = 2 to z = 0), and using different tracers, DM particles, subhalos, and
galaxies, in order to understand how reliable is the velocity dispersion as a proxy
for cluster masses. Simulations with different physics implemented are used, in or-
der to understand how different physical processes affect the structures and hence
the dynamics of tracers.

In this chapter we do not consider observational biases, such as projection ef-
fects and presence of interlopers (Biviano et al., 2006; Saro et al., 2012), but we focus
on the effects due to the physics and the implementation of baryonic physics in the
simulations. We find that such implementation affects the kinematics of the sys-
tems. The analysis of observational effects must therefore be based on simulations
where baryonic physics is taken into account.

This chapter is structured as follows. In Sect. 6.2 we describe the simulations
used for this work and define the samples used in our analyses. In Sect. 6.3 we
determine the relation between mass and velocity dispersion, and how it depends
on redshift and on the different types of simulations. In Sect. 6.3.1 we quantify the
scatter and its nature (statistical or intrinsic). In Sect. 6.3.2 we describe the velocity
bias of subhalos and galaxies with respect to the underlying diffuse component
of DM particles. In Sect. 6.3.3 we look for a signature of the different dynamical
processes which are at work in galaxy systems, on the velocity distributions of the
different tracers of the gravitational potential. Finally in Sect. 6.4 we discuss our
results and present our conclusions.
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6.2 Simulations

6.2.1 Initial conditions

Our samples of cluster-sized and group-sized halos are obtained from 29 Lagrangian
regions, centred around as many massive halos identified within a large-volume,
low-resolution N-body cosmological simulation, resimulated with higher resolu-
tion. We refer to Bonafede et al. (2011) for a more detailed description of the set
of initial conditions used to generate samples of simulated clusters used for our
analysis.

The parent Dark Matter (DM) simulation followed 10243 DM particles within a
box having a comoving side of 1 h−1 Gpc, with h the Hubble constant in units of
100 km s−1 Mpc−1. The cosmological model assumed is a flat ΛCDM one, with
Ωm = 0.24 for the matter density parameter, Ωbar = 0.04 for the contribution of
baryons, H0 = 72 km s−1 Mpc−1 for the present-day Hubble constant, ns = 0.96
for the primordial spectral index and σ8 = 0.8 for the normalisation of the power
spectrum. Within each Lagrangian region we increased the mass resolution and
added the relevant high-frequency modes of the power spectrum, following the
zoomed initial condition (ZIC) technique (Tormen et al., 1997). Outside these re-
gions, particles of mass increasing with distance from the target halo are used,
so that the computational effort is concentrated on the region of interest, while a
correct description of the large scale tidal field is preserved. Each high-resolution
Lagrangian region is shaped in such a way that no low-resolution particle contam-
inates the central zoomed-in halo at z = 0 at least out to 5 virial radii. As a result,
each region is sufficiently large to contain more than one interesting halo with no
contaminants within its virial radius.

Initial conditions have been first generated both for DM-only simulations. The
mass of DM particles in the zoomed–in regions is mDM = 109 h−1M⊙. Henceforth
we refer to these simulation as DM-only. Initial conditions for hydrodynamical sim-
ulations have been generated only in the low–resolution version, by splitting each
particle within the high-resolution region into two, one representing DM and an-
other representing the gas component, with a mass ratio such to reproduce the cos-
mic baryon fraction. The mass of each DM particle is then mDM = 8.47 · 108 h−1M⊙
and the initial mass of each gas particle is mgas = 1.53 · 108 h−1M⊙.
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6.2.2 The simulation models

All the simulations have been carried out with the TreeePM–SPH GADGET-3 code,
a more efficient version of the previous GADGET-2 code (Springel, 2005). As for the
computation of the gravitational force, the Plummer-equivalent softening length is
fixed to ǫ = 5 h−1 kpc in physical units below z = 2, while being kept fixed in
comoving units at higher redshift.

Besides the DM–only simulation, we also carried out a set of non–radiative
hydrodynamic simulations (NR hereafter) and two sets of radiative simulations,
based on different models for the release of energy feedback.

A first set of radiative simulations includes star formation and the effect of feed-
back triggered by supernova (SN) explosions (CSF set hereafter). Radiative cool-
ing rates are computed by following the same procedure presented by Wiersma
et al. (2009). We account for the presence of the cosmic microwave background
(CMB) and for the model of UV/X–ray background radiation from quasars and
galaxies, as computed by Haardt and Madau (2001). The contributions to cooling
from each one of eleven elements (H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe) have been
pre–computed using the publicly available CLOUDY photo–ionisation code (Ferland
et al., 1998) for an optically thin gas in (photo–ionisation) equilibrium. Gas particles
above a given threshold density are treated as multiphase, so as to provide a sub-
resolution description of the interstellar medium, according to the model originally
described by Springel and Hernquist (2003). We also include a description of metal
production from chemical enrichment contributed by SN-II, SN-Ia and low and in-
termediate mass stars (Tornatore et al., 2007). Stars of different mass, distributed
according to a Chabrier IMF (Chabrier, 2003), release metals over the time-scale
determined by the corresponding mass-dependent life-times (taken from Padovani
and Matteucci 1993). Kinetic feedback contributed by SN-II is implemented ac-
cording to the scheme introduced by Springel and Hernquist (2003): a multi-phase
star particle is assigned a probability to be uploaded in galactic outflows, which
is proportional to its star formation rate. In the CSF simulation set we assume
vw = 500 km s−1 for the wind velocity.

Another set of radiative simulations is carried out by including the same phys-
ical processes as in the CSF case, with a lower wind velocity of vw = 350 km s−1,
but also including the effect of AGN feedback (AGN set, hereafter). In the model
for AGN feedback, released energy results from gas accretion onto supermassive
black holes (BH). This model introduces some modifications with respect to that
originally presented by Springel (2005) (SMH) and will be described in detail by
Dolag et al. (2012, in preparation). BHs are described as sink particles, which grow



116 Emiliano Munari

their mass by gas accretion and merging with other BHs. Gas accretion proceeds
at a Bondi rate, while being Eddington–limited. Radiated energy corresponds to a
fraction of the rest-mass energy of the accreted gas. This fraction is determined by
the radiation efficiency parameter ǫr = 0.1. The BH mass is correspondingly de-
creased by this amount. A fraction of this radiated energy is thermally coupled to
the surrounding gas. We use ǫ f = 0.1 for this feedback efficiency, which increases
to ǫ f = 0.4 whenever accretion enters in the quiescent “radio” mode and takes
place at a rate smaller than one-hundredth of the Eddington limit (e.g. Sijacki et al.,
2007; Fabjan et al., 2010).

6.2.3 The samples of simulated clusters

The identification of clusters proceeds by using a catalogue of FoF groups as a
starting point. The SUBFIND algorithm (Springel et al., 2001; Dolag et al., 2009) is
used to identify the main halo, whose centre corresponds to the position of the most
bound DM particle, and substructures within each FoF group. In the following, we
will name “galaxies” the bound stellar structures hosted by the subhalos identified
by SUBFIND in the radiative CSF and AGN hydrodynamical simulations.

In this work we consider all the main halos with M200 > 1013M⊙ from z = 0
to z = 2, which contain no low–resolution particles within the spherically defined
r200. Among these cluster-sized and group-sized halos, we only retain those with at
least five subhalos more massive than 1011M⊙ within r200. The number of selected
halos varies at different redshifts and in different simulation sets, from a minimum
of 54 to a maximum of 308.

The subhalos that we consider in our analysis are selected to be more massive
than 1011M⊙, which corresponds to 72 particles in the DM simulations. The galax-
ies we consider in our analysis (in the CSF and AGN sets) are selected to have a
stellar mass ≥ 3× 109M⊙. By choosing this lower limit in stellar mass, we retain all
subhalos more massive than 1011M⊙ and include many others with smaller masses.
As a consequence, there are more halos with ≥ 5 galaxies than with ≥ 5 subhalos
(within r200). Note that the effects of the AGN feedback is negligible for galaxies
with stellar masses below the chosen limit since they are generally hosted within
halos where BH particles have never been seeded.
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6.3 The velocity dispersion - mass relation

Given a tracer of the gravitational potential of a halo (DM particles, subhalos,
galaxies) it is possible to write a relation between halo mass and velocity disper-
sion of the tracer, based on (i) the definition of circular velocity at r200, v200 =
10 [G h(z)M200]

1/3, and (ii) the relation between σ200 and v200. A relation between
velocity dispersion and mass can be derived analytically once the form of the mass
density profile and of the velocity anisotropy profile are given (see e.g. Mauduit
and Mamon, 2007, and the erratum Mauduit and Mamon 2009).

Following Evrard et al. (2008), we use the one-dimensional velocity dispersion

σ1D ≡ σ200/
√

3. Using the relations provided by Łokas and Mamon (2001, eqs. 22–
26) we calculate the ratio between σ1D and v200 for NFW mass profiles of concentra-
tions c = 3 and 10, and for (constant) velocity anisotropies (see eq. 3.16) β = 0 and
0.5. These values of c and β are typical of group- and cluster-sized halos (e.g. Gao
et al., 2008; Wojtak et al., 2008; Mamon et al., 2010). We find σ1D/v200 = 0.64, 0.69
for β = 0 and σ1D/v200 = 0.68, 0.70 for β = 0.5; the larger values are for c = 10.
The average value we calculate using DM particles for all the halos selected in our
analysis, σ1D/v200 = 0.68, lies within the same range.

Using the range σ1D/v200 = 0.64–0.70 just found, and the definition of v200, we
find

σ1D

km s−1
= A1D ·

[
h(z) M200

1015M⊙

]α

(6.1)

with A1D = 1040–1140 and α = 1/3. Given that the real, simulated halos are not
perfect NFW spheres, and that a halo concentration depends on its mass and red-
shift (e.g. Duffy et al., 2008; Gao et al., 2008), the real values of A1D and α can be
different, and need to be evaluated from the data. Moreover, DM particles, subha-
los, and galaxies do not necessarily obey the same σ1D–M200 relation. We therefore
evaluate for each cluster of the samples described in Sect. 6.2.3 the values of σ1D

of DM particles, subhalos, and (for the CSF and AGN simulations) galaxies. The
use of simulations with different baryonic physics implemented allows us to un-
derstand how baryons and different feedback models modify the scaling relation
between velocity dispersion and mass. The σ1D values of DM particles are ob-
tained using the biweight estimator (Beers et al., 1990), when at least 15 data points
are available. Otherwise, as suggested by Beers et al. (1990), we use the classical
standard deviation. The confidence intervals for the σ1D values are obtained using
eq. (16) in Beers et al. (1990).

We then perform a linear fit to the log(σ1D) vs. log[h(z)M200] values, with
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σ1D in units of km s−1 and M200 in units of 1015 h−1M⊙, for each simulation set, at
several redshifts. The fits were performed with the IDL procedure linfit, inversely
weighting the data by the uncertainties in the values of σ1D. The results of these fits
are the values of the parameters A1D and α of eq. (6.1). In Fig. 6.1 and 6.2 we show
examples of these fits for the AGN simulations at redshift 0 and 1.26, respectively.

Figure 6.1: Top panels: velocity dispersion σ1D (km s−1) as a function of halo mass
h(z)M200 (1015 M⊙), for DM particles (left panels), subhalos (central panels), and
galaxies (right panels), at z=0, in the AGN simulation sets. The dashed green line
represents the theoretically expected relation σ1D = 1090 · (h(z)M200)

1/3; the solid
line in each panel represents the best-fit relation. Bottom panels: y-axis residuals of
the DM particles (left), subhalos (centre), and galaxies (right), from the DM best-fit
relation.

In Fig. 6.3 we show the best fitting values of A1D and α as a function of redshift,
for different tracers in the AGN simulation, as an example. The slope α is con-
firmed to be consistent with the theoretically expected value α = 1/3. On the other
hand, its value is significantly larger when using subhalos or galaxies as tracers. In
any case the values of α and A1D do not generally show a significant dependence
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Figure 6.2: Same as Fig. 6.1 but for z=1.26.

on z. Only in two cases (subhalos in the DM simulation and galaxies in the AGN
simulation - see Appendix 6.5) we do find (marginally) significant correlations be-
tween α and z, mostly driven by the point at z = 2. Even in these cases, α changes
very little with redshift, ≃ 4% for the galaxies in the AGN simulation from z = 1.5
to z = 0. In fact, a model where α is constant with z provides an acceptable fit (in
a χ2 sense) to all cases (also those not shown in Fig. 6.3). Since the variation of
A1D and α with z is not significant, we take the weighted averages of their values
over all redshifts to characterise the σ1D − M200 relations of the different types of
simulations and tracers (see Table 6.1 and Fig. 6.4).

In Fig. 6.4 we show the dependence of the parameters α and A1D on the physical
processes included in the simulations. When considering DM particles as tracers,
the A1D values are well within the theoretically expected range, and the α values are
close to the virial expectation 1/3, regardless of the baryonic physics implemented
in the simulations. When considering subhalos or galaxies as tracers, the σ1D-
M200 relations are significantly steeper (α > 1/3) than for DM particles and than
expected theoretically. Furthermore, while the slope is nearly the same for all
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Figure 6.3: Average values of α and A1D (see eq. 6.1) for halos in AGN simulations
as a function of redshift, for different tracers, DM particle (black dots), subhalos
(red diamonds), and galaxies (blue triangles). The dashed green line in the top
panel is the theoretically expected value α = 1/3, the horizontal shaded area in the
bottom panel indicates the expected theoretical range A1D = 1040–1140 (see text).
The data of galaxies have been shifted by −0.05 in z for the sake of clarity.

the simulation sets, with α ≃ 0.36, the same does not hold for the normalization
A1D, this value being smaller when cooling and star formation are included. In
each simulation set, the α and A1D values are highest for the subhalos, and lowest
for the DM particles, with the values for the galaxies being closer to those of the
subhalos.

Both the A1D and the α values we find for the DM particles are in the range of
the values listed by Evrard et al. (2008) and coming from the analysis of different
simulations (see Table 4 in Evrard et al., 2008), most of which are DM-only. The
comparison with Lau et al. (2010) is less straightforward, since they did find a z-
dependence of the α parameter for DM particles. Taking an error-weighted average
of the values they found at different redshifts, we obtain A1D = 1103 ± 2 km s−1,
α = 0.325 ± 0.011 for their non-radiative simulations, and A1D = 1160 ± 9 km s−1,
α = 0.296 ± 0.012 for their radiative simulation. Lau et al. (2010)’s σ1D–M200 rela-
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A1D (km s−1) α
DM 1094 ± 3.7 0.334 ± 0.0014
NR 1102 ± 3.4 0.336 ± 0.0021
CSF 1081 ± 4.1 0.329 ± 0.0021
AGN 1095 ± 4.4 0.336 ± 0.0015
DM sub 1244 ± 4.7 0.361 ± 0.0027
NR sub 1259 ± 5.3 0.364 ± 0.0030
CSF sub 1166 ± 5.1 0.362 ± 0.0018
AGN sub 1199 ± 5.2 0.365 ± 0.0017
CSF gal 1165 ± 6.7 0.355 ± 0.0025
AGN gal 1177 ± 4.2 0.364 ± 0.0021

Table 6.1: Weighted average values over all redshifts of the parameters A1D and α
defining the σ1D − M200 relation (see eq. (6.1)) for different simulation sets, for DM
particles (top table), subhalos (middle table), and galaxies (bottom table).

tions are therefore flatter than ours, particularly so for the radiative simulations.
We discuss these differences in Sect. 6.4.

6.3.1 Scatter

An analysis of the scatter of the scaling relations is quite important for cosmological
applications. It has been pointed out (see, e.g. Mortonson et al., 2011) that the so
called Eddington bias causes the mass function to shift toward higher values of
mass if the scatter in the scaling relation between mass and mass proxy is not
properly taken into account. Furthermore we want to understand the nature of
such scatter, that is whether it is intrinsic or mainly due to statistical uncertainties.

The best fit relation eq. (6.1) has been subtracted from the values of the velocity
dispersion of the clusters for each simulation at each redshift. The result for the
AGN set at z=0 is shown in Fig. 6.5 for the three tracers. The errors are associated
to the biweight average value (Beers et al., 1990). In this figure the distribution of
the residuals is also shown, along with the best fit gaussian curves and the reduced
χ2 values of the fits. The residuals appear to be normally distributed, substructures
and galaxies having a wider distribution.

The scatter appears to be independent of cluster mass, as well as of redshift and
the type of simulation as shown in top panels of Fig. 6.6, the only difference being
in the tracer used to build the σ1D–M200 relation. When using DM particles the
scatter is around 5%, while using substructures or galaxies it is around 12%.
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Figure 6.4: Values of α and A1D (see eq. 6.1) averaged over all redshifts for different
tracers - DM particle (black dots), subhalos (red diamonds), and galaxies (blue
triangles) - for the different types of simulations. The dashed green line in the top
panel is the theoretically expected value α = 1/3, the horizontal shaded area in the
bottom panel indicates the expected theoretical range A1D = 1040–1140 (see the
text).

In order to understand the nature of the scatter, that is whether it is intrinsic or
statistical, we have tried to compute the intrinsic scatter following Williams et al.
(2010). Performing a linear fit of the log σ1D − log M200 relation, the intrinsic scatter

is considered as a parameter that minimizes χ2 = ∑
Nclus
i=1 [yi − (a · xi + b)]2/[ǫ2

y,i + a2 ·
ǫ2

x,i + σ2
int], where y = a · x + b is the linear relation, ǫx,i and ǫy,i are the uncertainties

on the x and y quantities and σint is the intrinsic scatter. In order to estimate
the value of the intrinsic scatter and its uncertainty, we performed 1000 bootstrap
resamplings of the couples of values (M200, œ1D), each time computing the intrinsic
scatter estimate. In a first time, we have evaluated the intrinsic scatter in 4 bins of
mass, but we found no mass dependence. Therefore we have evaluated it using all
the data. The intrinsic scatter relative to DM particles is 5%, comparable with the
total scatter. This means that when using DM particles the scatter in the scaling
relation is entirely intrinsic. In fact the values of velocity dispersion evaluated
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using DM particles have been obtained using a huge number of objects, hence
the statistical uncertainty is very small. On the other hand velocity dispersions
estimates using substructures and galaxies are based on relatively small numbers
of objects, and statistical uncertainties dominate the scatter. The resulting intrinsic
scatter for these tracers turns out to be quite small and consistent with the value
found for DM particles.

Figure 6.5: Residuals of the velocity dispersion after subtracting the best fit relation
eq. (6.1) for the AGN set at z=0, for the three tracers as indicated in the panels.
The distributions of residuals for the three tracers is also shown in the bottom right
panel, along with the best fit gaussian curves and the reduced χ2 of the fits.
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Figure 6.6: Left panel: Fractional scatter as a function of redshift in the AGN set.
Black solid line refers to the value computed by using DM particles, red dashed
and blue dash-dotted by using substructures and galaxies, respectively. The thinner
lines are the confidence intervals. Right panel: Fractional scatter as a function of the
type of simulation at z=0. Lines and colours are the same as in the left panel.

6.3.2 Velocity bias

The difference between the σ1D–M200 relations established for DM particles, on one
side, and subhalos and galaxies, on the other side implies that subhalos and galax-
ies have a higher velocity dispersion than DM particles in high mass halos. Since
the relation is steeper for subhalos and galaxies than for DM particles, the oppo-
site may occur in halos of low masses. To examine how σ1D changes in halos of
different masses when using different implementations of baryonic physics, here
we analyse the velocity bias, i.e. the ratio between the velocity dispersions of sub-
halos (galaxies) and DM particles, bv =σsub/σDM (bv =σgal/σDM, respectively), for

two subsamples of halos, one with masses h(z)M200 < 1014M⊙, and the other with
masses h(z)M200 > 3 · 1014M⊙ (the low- and high-mass samples hereafter). The av-
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erage bv values as a function of redshift are shown in Fig. 6.7 and 6.8, for subhalos
and galaxies in different simulation sets, separately for the halos in the low-mass
sample (left panels) and for the halos in the high-mass sample (right panels).

Figure 6.7: Average values of the velocity bias for subhalos, as a function of red-
shift, for halos in the low-mass sample (left panel) and in the high-mass sample
(right panel). Dotted line refers to substructures in the DM set, short black dashed
line refers to substructures in the NR set, the other lines refer to substructures of
the CSF and AGN sets, as indicated in the legend. Error-bars on the bias values are
not shown for the sake of clarity. A typical error-bar is shown at the bottom-right
of the right panel. The other points with error bars are the z = 0 values from Lau
et al. (2010). The legend in the right panel identifies the different symbols as rep-
resentative of the non-radiative simulations (NR), and the CSF simulations of Lau
et al. (2010).

The bias is on average higher for the high-mass sample halos, and at lower
redshifts. A remarkable change in the bias appears when introducing cooling and
star formation. In fact the biases are higher for substructures in the DM and in
non-radiative simulations (NR) than in the radiative ones (CSF, AGN), both when
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Figure 6.8: Same as Fig. 6.7 but for galaxies rather than substructures.

using substructures and galaxies, reflecting again the importance of the cooling
and the feedback processes in the dynamics.

In Fig. 6.7 and 6.8 we also show the values found by Lau et al. (2010). At
z = 0, the sample of Lau et al. (2010) and ours have similar mass distributions
and there is a good agreement (within the error bars) between their bv values and
ours, separately for the different types of simulations and for the different tracers.
The comparison between our data and those in Lau et al. (2010) at z > 0 is not
shown because it is not straightforward: Lau et al. (2010) follow the same halos
at different redshifts by always considering the most massive progenitors of the
halos selected at z = 0, whereas we consider all halos above a given mass cut at any
given redshift. Taken at face value, the biases they find at higher z are smaller than
those we find, and this difference might be related to a strong overcooling present
in their simulations, making their subhalos very resistant to tidal disruption.
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6.3.3 Dynamical processes in halos

The above results show how the relative kinetic energy content in subhalos (or
galaxies) and the diffuse DM component varies with redshift, halo mass, and the
type of simulations. Here we provide an interpretation of these results in terms of
the dynamical processes that are effective in clusters and groups, i.e. dynamical
friction, merging with the central galaxy, tidal disruption, and accretion from the
surrounding large-scale structure, and how these processes depend on the physics
implemented in the simulations.

A better understanding of the physical cause of the differences in the σ1D-M200

relation and of the velocity biases analysed in the two previous sections can be
obtained by examining the probability distribution function for the modulus of the
velocity of the different tracers. These distributions are shown in Fig. 6.9 for the
CSF and AGN simulations, at z = 0 and 1.26, separately for the low- and high-mass
samples.

The velocity distribution of DM particles (solid black lines in Fig. 6.9) appears
to be single-peaked, but only for the low-mass sample. The DM particle velocity
distribution for the high-mass sample is flat-topped and sometimes double-peaked.
These features, present in all the different types of simulations, appear to be more
pronounced for the velocity distributions of subhalos (dashed red lines) and galax-
ies (dotted blue lines), and depend on the physics implemented in the simulations.
The difference in the velocity distributions of DM particles, subhalos, and galaxies
is at the origin of the velocity biases and the differences in their σ1D-M200 rela-
tions. Hereafter we interpret the effect of the dynamical processes that shape these
velocity distributions.

A flat-topped or double-peaked velocity distribution is the signature of ongoing
mergers and infall of matter into the halos, which tends to populate the high-
velocity part of the velocity distributions (see, e.g. Diemand et al., 2004; Wang et al.,
2005; Wetzel, 2011; Ribeiro et al., 2011). With time, the velocity distribution relaxes
via phase-mixing and dynamical relaxation and approaches a single Maxwellian
(e.g. Faltenbacher and Diemand, 2006; Lapi and Cavaliere, 2011, and references
therein).

The relative importance of the relaxed and unrelaxed velocity distributions de-
pends on how strong the matter infall rate is. Higher-mass halos are dynamically
younger, and undergo significant matter infall until more recent times than lower-
mass halos (e.g. Lapi and Cavaliere, 2009; Faltenbacher and White, 2010). Hence in
higher-mass halos the unrelaxed, high-velocity component is more important than
in lower-mass clusters, as we see in Fig. 6.9.
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The velocity distributions of subhalo and galaxies is different from those of
DM particles, because of additional dynamical processes that leave the DM particle
distributions unaffected. One is the dynamical friction, leading to a decrease in
the orbital energy, hence to an approach to the cluster centre and a decrease in
velocity, eventually followed by merger with the central cluster galaxy (e.g. Boylan-
Kolchin et al., 2008; Wetzel and White, 2010). The other process is tidal disruption,
caused by the integral of tidal interactions leading to mass losses (e.g. Diemand
et al., 2004). These two processes are related. On one hand, dynamical friction
becomes ineffective when tidal mass losses become important (e.g. Faltenbacher
and Mathews, 2007), because dynamical friction is more effective for more massive
objects. On the other hand, tidal mass losses are enhanced by dynamical friction,
since they are more effective in slow-moving subhalos (and galaxies) than their
fast-moving counterparts (Diemand et al., 2004). Hence dynamical friction is likely
to be more effective at the first orbit of a subhalo (or galaxy) (Faltenbacher and
Mathews, 2007), while tidal disruption may take several orbits.

Dynamical friction tends to increase the low-velocity tail of the distribution. A
possible signature of this effect is visible in the velocity distributions of subhalos
and galaxies at high-z in Fig. 6.9. On the other hand, the removal of the slowest
subhalos (or galaxies) by tidal disruption or merger with the central galaxy tends
to decrease the low-velocity tail of the distribution. This is likely to occur in the re-
laxed component of the global velocity distribution, since subhalos (and galaxies)
in the relaxed component have spent more time orbiting their parent halos than
the recently infallen, unrelaxed population. The resulting velocity distribution will
then appear to be double peaked, one low-velocity peak being due to the relaxed
component, depopulated by tidal stripping, and another high-velocity peak due to
the infalling population, that has not yet experienced significant tidal mass losses.
This is particularly evident in higher-mass halos, in which the infall rate is higher
(at given z) than in lower-mass halos. The resulting asymmetric velocity distribu-
tion is visible in Fig. 6.9 (dashed red and dotted blue lines).

These processes are dependent on the physical processes and feedback imple-
mented in the simulations. In fact in Fig. 6.9 one can note that the velocity dis-
tributions of galaxies and subhalos in the CSF simulation sets are both closer to
the velocity distributions of DM particles, than the corresponding ones in the AGN
simulation sets. This occurs because baryon cooling tends to make galaxies and
subhalos more resistant against tidal disruption (e.g. Weinberg et al., 2008; Lau
et al., 2010). However cooling efficiency is reduced in simulations including AGN
feedback thus making halos less compact and galaxies more fragile than in the
over-cooled CSF simulations.
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Yet another difference is visible in Fig. 6.9, namely the velocity distribution
for galaxies in the AGN sets is slightly closer to the distribution of DM particles
than that of subhalos. This is due to the different mass limit we use to select
galaxies and subhalos (see Sect. 6.2). In our samples, subhalos selected by means
of total bound mass are on average objects of higher mass than subhalos selected
by means of stellar mass, hence they are subject to stronger dynamical friction,
slowing them down and making them more easily subject to tidal disruption. Our
result is reminiscent of that of Faltenbacher and Diemand (2006) who found that
the velocity distribution of galaxies is quite similar to that of DM particles when
selecting objects by their mass at accretion, i.e. before tidal stripping operates, as
pointed out also by Lau et al. (2010).

The processes so far discussed provide a frame for a better understanding of
Fig. 6.7 and 6.8. At fixed galaxy mass, dynamical friction is more efficient in low-
mass clusters and at high redshifts, before tidal stripping decreases galaxy masses.
Therefore dynamical friction tends to create a velocity bias < 1 in low mass, high-
z systems, while leaving almost unaffected high mass clusters. Tidal stripping is
more efficient on slow moving galaxies, which are stripped and eventually dis-
rupted (or removed from a mass-limited sample), and operates at all times. This
causes an increase of the bias with time. This has the effect of erasing the initial
dynamical-friction bias in low-mass clusters and creating a bias > 1 in high-mass
clusters as we approach z = 0.

An important rôle in these processes may also be played by galaxy orbits. In Fig.
6.10 we show the velocity anisotropy profiles for the different tracers, in low- and
high-mass systems, for z=0 and 1.26. For lack of sufficient number of substructures
and galaxies in each system, the profiles for these tracers are computed for stacks
of all systems, where substructure and galaxy velocities have been scaled by each
system v200 before stacking. With this procedure, richer clusters weigh more in the
final profile. For the DM particles we are not limited by poor statistics, so we derive
the anisotropy profiles individually for each halo, and then take an average. For
consistency with what was done for the substructures and galaxies, the average is
weighted by the number of substructures present in each cluster. Fig. 6.10 shows
that orbits are more radially anisotropic in high-mass than in low-mass systems (as
already shown by Wetzel, 2011). Understanding the reason for this difference (and
for the redshift evolution clearly visible in the same figure) is beyond the scope of
this Thesis, although we suspect that it might be related to the younger dynamical
age of higher mass clusters (as suggested by, e.g., Biviano and Poggianti, 2009, and
references therein). What is relevant in this context is that galaxies on more radial
orbits reach closer to the cluster centre and therefore suffer from stronger tidal
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stripping effects. The different orbital anisotropy of galaxies contribute to create a
higher velocity bias in high-mass relative to low-mass clusters.

6.4 Discussion and conclusions

We determined the σ1D-M200 relation for DM particles, subhalos, and galaxies in
cluster- and group-sized halos extracted from ΛCDM cosmological simulations.
We analysed four sets of simulations carried out for the same halos: one DM-only,
one with non-radiative gas, and another two with gas cooling, star formation and
galactic ejecta triggered by SN winds, one of the two also including the effect of
AGN feedback.

The main results of our analysis can be summarised as follows.

• We confirm that the σ1D − M200 relations for the DM particles are consistent
with the theoretical expectation from the virial relation, assuming NFW halo
mass profiles, with reasonable values of concentration and velocity anisotropy.

• The intercepts at 1015M⊙ and slopes of the logarithmic σ1D-M200 relations de-
rived using subhalos and galaxies as tracers of the potential are always higher
than those derived using DM particles. We do not find a significant depen-
dence of the σ1D-M200 relations on redshift, but we do find a dependence
on the kind of simulation, the radiative ones having a higher value of the
normalization.

• The σ1D-M200 relations for the DM particles are consistent with those found by
Evrard et al. (2008). On the other hand the relations we find for all the tracers
are steeper than those derived by Lau et al. (2010). This difference might be
caused by the narrower halo mass range explored by Lau et al. (2010).

• The differences in the σ1D-M200 relations for the different tracers of the halo
gravitational potential and for the different physics implemented are due to
dynamical processes taking place in the halos. In fact dynamical friction and
tidal disruption act on substructures and galaxies but not on DM particles.
Dynamical friction slows down a substructure or a galaxy before it suffers
mass loss due to tidal stripping. Dynamical friction is therefore more efficient
at high-z. It is also more efficient in lower-mass clusters for given galaxy
mass. Tidal stripping, on the other hand, is more efficient in higher-mass



Emiliano Munari 131

clusters, where galaxies move on more radial orbits (hence with smaller peri-
center radii). As a result, velocity biases are created in the substructure and
galaxy populations, relative to the DM particles, and these biases are ≤ 1
for low-mass systems and ≥ 1 for high-mass systems, and increasing with
time, leading to the observed differences in the σ1D-M200 relations of different
tracers.

• In order to correctly reproduce such processes, a detailed implementation of
the baryonic physics must be used in the simulations. In fact the presence
of baryonic matter makes halos more resistant against tidal disruption (e.g.
Weinberg et al., 2008). In this way in simulations with cooling and star forma-
tion there is a higher fraction of survivors among the slow moving subhalos,
reflecting in a lower value of the normalization on the σ1D-M200 relation.

• We analysed the scatter in the σ1D − M200 relation, finding a value of around
5% for DM particles and 12% for substructures and galaxies. The intrinsic
scatter, after accountinbg for the statistical errors in the σ1D measurements,
appears to be . 5%, independently of the tracer.

Such a small scatter in the σ1D −M200 relation potentially makes σ1D a very good

proxy for the mass, via inversion of eq. (6.1): M200/1015M⊙ = (σ1D/A1D)
(1/α)/h(z).

However, A1D and α are significantly different for the different tracers (DM par-
ticles, substructures, galaxies). Using the values obtained for one tracer to infer
cluster masses from the σ1D of a different tracer can lead to systematic errors of up
to ∼ 30%. In comparison, the effect of using different baryonic physics for the same
tracer has a much smaller effect on the mass estimates obtained from σ1D (. 7%,
see Table 6.2). The presence of scatter, even though small, makes possible the ap-
plicability of the scaling relation only in a statistical sense, not for mass estimates
of single objects.

The results presented in this chapter show that good knowledge of the σ1D −
M200 relation in 6D phase space is fundamental before one could apply this relation
to observational samples. Projection effects and the presence of interlopers can
significantly affect the accuracy and reliability of the mass estimate (e.g. Cen, 1997;
Biviano et al., 2006). We plan to consider these effects in detail, in a forthcoming
work, using simulations with a proper implementation of baryonic physics and
galaxies as tracers.
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simulation tracer σ1D = 300 km/s σ1D = 900 km/s

DM DM part 0.029 0.774
NR DM part 0.029 0.760
CSF DM part 0.028 0.796
AGN DM part 0.029 0.775
DM sub 0.027 0.567
NR sub 0.027 0.552
CSF sub 0.033 0.679
AGN sub 0.031 0.633
CSF gal 0.030 0.671
AGN gal 0.032 0.665

Table 6.2: Masses (in 1015M⊙) of clusters at z=0 predicted from the σ1D − M200

relation for two values of σ1D, 300 m/s and 900 m/s.

6.5 Appendix: plots for other models

In this appendix we report the plots showing the redshift dependence of the slope
and the intercept of eq. (6.1) as well as the velocity distributions of the tracers for
all simulation sets not already shown before in the main text.
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Figure 6.9: Top panels: The velocity distributions for the CSF simulations for the
low-mass sample (left panels) and the high-mass sample (right panels) at z = 0 (top
panels) and z = 1.26 (bottom panels) for DM particles (solid black lines), subhalos
(dashed red lines) and galaxies (dotted blue lines). All distributions are normalised
to their integrals. Bottom panels: same as top panels but for the AGN simulations.
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Figure 6.10: Velocity anisotropy as a function of the cluster center, for the AGN
set. Top panels refer to z=0, bottom panels to z=1.26. Panels on the left are relative
to the low-mass sample, panels on the right to the high-mass sample. Red points
refer to the results obtained using subhalos, while blue diamonds using galaxies.
The four bins are built in such a way that within each bin there is the same number
of objects. Galaxies diamonds have been shifted by -0.05 in redshift for the sake of
clarity. The black solid line refers to the results obtained using DM particles.
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Figure 6.11: Same as Fig. 6.3 for the DM set.

Figure 6.12: Same as Fig. 6.3 for the NR set.
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Figure 6.13: Same as Fig. 6.3 for the CSF set.

Figure 6.14: Same as Fig. 6.9 for the DM set.



Emiliano Munari 137

Figure 6.15: Same as Fig. 6.9 for the NR set.
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7

Conclusions

The main focus of this Thesis concerns the study of the internal dynamics of galaxy
clusters, and the information on the galaxy cluster mass content it can provide.
Cluster mass has proven to be an important tool for cosmological studies (see Sect.
2.6), the main problem being that it is not a directly observable quantity. In par-
ticular, I have highlighted how the estimates of the mass and the pseudo phase
space density profile of galaxy clusters, obtained from dynamical information, are
affected when taking into account the presence of baryons and according to the
tracer of the gravitational potential adopted.

More in detail, the following aspects are studied and discussed in this Thesis.

Mass, velocity anisotropy and pseudo phase–space density profiles of a nearby

cluster

High quality photometric and spectroscopic data are available for a large number
of galaxies in the cluster A2142. Taking advantage of these data, we computed the
mass and velocity anisotropy profiles for this cluster. The mass profile has been
obtained by using three techniques based on the kinematics of member galaxies,
namely the caustic method, the method of Dispersion - Kurtosis and MAMPOSSt.
The mass profile determinations, as well as the virial values of mass and radius,
obtained with the different techniques, are in agreement with each other and with
the estimates from X-ray and weak lensing studies. Our final measurement of the
cluster mass profile is obtained by averaging the lensing, X-ray and kinematics
determinations. The cluster mass profile is well fit by an NFW profile with concen-
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tration parameter c = 4.0 ± 0.5.
Through the inversion of the Jeans equation we computed the velocity anisotropy

profiles. The populations of red and blue galaxies appear to have different veloc-
ity anisotropies, with red galaxies being almost isotropic while blue galaxies are
radially anisotropic, with a weak dependence on radius.

The pseudo phase–space density profile Q(r) for the red galaxy population
agrees with the theoretical results found in cosmological N–body simulations. The
relation between the velocity anisotropy β and the logarithmic slope γ of the den-
sity profile matches the theoretical relation only in the inner region when consid-
ering the red galaxies. The deviations might be due to the theoretical relations not
taking into account the presence of baryons and using DM particles as tracers.

The comparison of the PPSD profile of A2142 with that of another cluster,
MACS1206, reveals a different behaviour of the blue galaxy population. MACS1206
presents, in fact, agreement with the theoretical relation also for the blue popula-
tion. This suggests that the PPSD profile might provide a tool to investigate the
dynamical history of galaxy clusters. If a major merging happened recently, the
process of violent relaxation should be able to lead also blue galaxies to equilib-
rium, resulting consequently in a PPSD like the MACS1206’s one. On the other
hand, if a cluster has not undergone a major merging event since long, then the
blue galaxies we observe are those only recently accreted. For this population, the
PPSD would then look like the one of A2142.

The role of the tracer and the baryonic physics in the velocity dispersion – mass

scaling relation

In Chapter 6 I presented an analysis of the relation between the masses of cluster-
and group-sized halos, extracted from ΛCDM cosmological N-body and hydrody-
namic simulations, and their velocity dispersions, at different redshifts from z = 2
to z = 0. The main aim of this analysis is to understand how the implementation
of baryonic physics in simulations affects such relation, i.e. to what extent the use
of the velocity dispersion as a proxy for cluster mass determination is hampered
by the imperfect knowledge of the baryonic physics. In our analysis we use several
sets of simulations with different physics implemented: one DM-only simulation,
one simulation with non-radiative gas, and two radiative simulations, one of which
with feedback from Active Galactic Nuclei. Velocity dispersions are determined us-
ing three different tracers, dark matter particles, subhalos, and galaxies.

We confirm that DM particles trace a relation that is fully consistent with the
theoretical expectations based on the virial theorem, σv ∝ Mα with α = 1/3, and
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with previous results presented in the literature. On the other hand, subhalos and
galaxies trace steeper relations, with velocity dispersion scaling with mass with
α > 1/3, and with larger values of the normalization. Such relations imply that
galaxies and subhalos have a ∼ 10 per cent velocity bias relative to the DM particles,
which can be either positive or negative, depending on halo mass, redshift and
physics implemented in the simulation.

We explain these differences as due to dynamical processes, namely dynamical
friction and tidal disruption, acting on substructures and galaxies, but not on DM
particles. These processes appear to have different efficiencies, depending on the
halo mass and the importance of gas cooling, and may create a non-trivial depen-
dence of the velocity bias and the σ1D–M200 relation on the tracer, the halo mass
and its redshift.

These results are relevant in view of the application of velocity dispersion as a
proxy for cluster masses in ongoing and future large galaxy redshift surveys.

Future perspectives

Recent studies (see e.g. Saro et al., 2012; Wojtak et al., 2013) have shown that the
velocities of DM particles in a cluster are strongly correlated with the triaxiality
of a cluster halo. The line of sight velocity dispersion therefore depends on the
angle between the line of sight and the halo major axis. If these two directions are
aligned, the velocity dispersion appears to be at its maximum value. The minimum
value is instead obtained when observing in the direction of the minor axis. There-
fore clusters will appear to have a larger kinetic energy content when observed
along their major axis, and a smaller one when observed along their minor axis.
Translating the kinetic energy content into mass, cluster masses will therefore be
over– or under–estimated, depending on their orientation in the space with respect
to the observer.

Using hydrodynamical simulations, in order to take into account the possible
effect of baryonic physics, it is possible to quantify this effect. Moreover, it is use-
ful to use mock catalogues built by tracing light cones that mimic an observation
(see e.g. Merson et al., 2013, for the creation of light cones). In this way it is pos-
sible to take into account the projection effects that constitute another important
source of scatter in the relation between velocity dispersion and cluster mass. The
knowledge of the “true” value of mass in the mock catalogues makes possible to
quantify the impact of such phenomena on cluster mass estimate and allows us
to characterise their impact on the final mass estimate, providing a powerful tool
for the future observations. Galaxies have to be used as tracers of the dynamics
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of simulated clusters, rather than DM particles, since the use of the wrong tracer
can induce important differences in the kinematics, as we have shown in chapter 6.
Furthermore, the impact of a wrong choice of the cluster center, or the presence of
merging structures, are expected to significantly affect measurement of total mass
and of mass profiles. The idea is to correct the observed velocity dispersion accord-
ing to the observed shape of the BCG, or using some other observable quantity that
bears the information on the shape of the halos (e.g. the projected distribution of
cluster members). This work would provide a useful tool for single cluster mass
measurement, helping to improve its reliability. Also, in a large survey like Euclid,
it could provide a tool for reducing the scatter in the scaling relation between veloc-
ity dispersion and mass. In fact clusters are randomly oriented in space, therefore
sometimes they will be observed along a direction close to their major axis, and
sometimes along a direction close to their minor axis.

For the same reasons, also the PPSD profile is affected by the triaxiality of the
halos, and the impact on the observational estimates can be addressed via numer-
ical simulations. Interesting observational perspectives are offered by the Euclid
mission.

The studies about the PPSD carried out so far have focused on the DM–only
systems. In chapter 6 I showed that the inclusion of baryonic physics in simula-
tions affects the kinematics of galaxies. A first question comes natural: how do
baryons affect the PPSD? Of course real systems do have baryons, therefore the
study of how this component affects the PPSD profile is the next step in this field.
Another result presented in chapter 6 is that galaxies are biased tracers of the inter-
nal kinematics. DM particles and galaxies undergo different dynamical processes,
causing these two components to behave differently. Therefore the PPSDs com-
puted using different tracers of the internal dynamics are expected to be different.
Although the use of DM particles provides full information on the phase space of
the system, DM particles are not observable, while galaxies are. Still, the present
studies in this field rely on the analysis of the DM particles. Therefore the study
of how galaxy kinematics affects the PPSD is a necessary step toward the study of
the PPSD in real systems. These issues can be addressed by means of numerical
simulations. Using a set of hydrosimulations with different implementation of the
baryonic physics would allow us to understand the contribution of the different
processes implemented to the dynamics of the systems.

A process that acts in shaping the pseudo phase space density is the merging
between galaxy clusters. As seen in Sect. 5.7, from the comparison of the PPSD
profiles of two different clusters it appears that the PPSD might provide informa-
tion about the dynamical state of galaxy clusters, in particular on the time elapsed
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since the last major merger event. In fact, these events of merging can settle the
equilibrium of the structure via the so–called violent relaxation. Blue galaxies, that
usually are not expected to constitute a population of relaxed objects, appear to
be in equilibrium as well. On the other hand, systems that underwent a major
merging long time ago had time to transform blue galaxies into red ones, and the
population of blue galaxies is a recently accreted one, not yet in equilibrium. Since
merging is a process that influences clusters, inferring the time elapsed since the
last significant event of merging would provide a valuable tool to trace the past
history of the hierarchical assembly of clusters. Using simulations, it is possible to
follow the history of galaxy clusters by building the merger trees. In fact the history
of each object is stored, and the time elapsed since an event of merging can be
easily recovered. In this way it is possible to study how the PPSD changes when a
merging event takes place: mass of the merging systems, time since the merging,
orbits of galaxies are all quantities that have to be characterized in relation to the
change of the PPSD.

Euclid will result very useful for investigating the PPSD profiles of real systems.
Accurate estimates on the density profiles on scales larger than ∼ 100 kpc will be
obtained thanks to the Euclid high quality images that allow to detect both the
strong and the weak lensing signals.

Statistics is the main difference in the approaches adopted in the studies pre-
sented in chapters 5 and 6. A high number of spectroscopic data providing a good
estimate of the line–of–sight velocity of galaxies is in fact compulsory for studies
like the ones we performed on A2142. Such a rich high quality data–set is currently
available only for nearby objects.

The CLASH collaboration1 makes use of the observation of 25 massive galaxy
clusters with HST’s Wide-field Camera 3 (WFC3) and the Advanced Camera for
Surveys (ACS), and has begun a spectroscopic follow-up on 12 of them with the
VLT. The sample redshift ranges from z = 0.15 up to z = 0.9 (with a median of
z ∼ 0.4), covering the mass range 5− 30 · 1014M⊙. For one of these clusters, a study
on the internal dynamics and the PPSD has already been performed (Biviano et al.,
2013). The dynamical analysis will be extended to the other clusters in the near
future, providing detailed information although only for few objects.

Specifically projected spectrographs for IR observations (e.g. KMOS2) will al-
low to study the distant Universe, while the development of new spectrographs

1http://www.stsci.edu/ postman/CLASH/Home.html
2http://www.eso.org/sci/facilities/develop/instruments/kmos.html
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able to analyse several sources (MOS: Multi Object Spectrograph, e.g. WEAVE3) will
allow to measure the velocities of cluster galaxies with high precision also in the
inner regions of clusters. In this way a detailed study of the internal dynamics of
clusters is possible. Precise measurements of the velocity distribution of galaxies
is necessary for an accurate analysis of the PPSD profile. The lensing and X–ray
analyses also play an important role in this field, as they tighten the constraints of
the density profile.

The future directions of development on the study of the internal dynamics of
galaxy clusters outlined in this section are meant to investigate important aspects
of galaxy clusters, providing an invaluable source of information on the collapse
process, allowing to constrain the cosmological framework as well as to better un-
derstand the processes that affect the formation and evolution of galaxies.

3http://www.ing.iac.es/weave/index.html
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and W. Zheng. CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-
space density profiles of the z = 0.44 galaxy cluster MACS J1206.2-0847. A&A,
558:A1, October 2013. doi: 10.1051/0004-6361/201321955.

H. Boehringer and N. Werner. X-ray Spectroscopy of Galaxy Clusters. ArXiv e-
prints, July 2009.

H. Böhringer, G. W. Pratt, M. Arnaud, S. Borgani, J. H. Croston, T. J. Ponman,
S. Ameglio, R. F. Temple, and K. Dolag. Substructure of the galaxy clusters in the
REXCESS sample: observed statistics and comparison to numerical simulations.
A&A, 514:A32, May 2010. doi: 10.1051/0004-6361/200913911.

A. Bonafede, K. Dolag, F. Stasyszyn, G. Murante, and S. Borgani. A non-ideal
magnetohydrodynamic GADGET: simulating massive galaxy clusters. MNRAS,
418:2234–2250, December 2011. doi: 10.1111/j.1365-2966.2011.19523.x.

J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser. Excursion set mass functions for
hierarchical Gaussian fluctuations. ApJ, 379:440–460, October 1991. doi: 10.1086/
170520.

S. Borgani. Cosmology with Clusters of Galaxies. In M. Plionis, O. López-Cruz,
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Z. Lukić, K. Heitmann, S. Habib, S. Bashinsky, and P. M. Ricker. The Halo Mass
Function: High-Redshift Evolution and Universality. ApJ, 671:1160–1181, Decem-
ber 2007. doi: 10.1086/523083.

A. Maeder and G. Meynet. Grids of evolutionary models from 0.85 to 120 solar
masses - Observational tests and the mass limits. A&A, 210:155–173, February
1989.

S. Mahajan, G. A. Mamon, and S. Raychaudhury. The velocity modulation of
galaxy properties in and near clusters: quantifying the decrease in star for-
mation in backsplash galaxies. MNRAS, 416:2882–2902, October 2011. doi:
10.1111/j.1365-2966.2011.19236.x.

A. Mahdavi, H. Hoekstra, A. Babul, C. Bildfell, T. Jeltema, and J. P. Henry. Joint
Analysis of Cluster Observations. II. Chandra/XMM-Newton X-Ray and Weak
Lensing Scaling Relations for a Sample of 50 Rich Clusters of Galaxies. ApJ, 767:
116, April 2013. doi: 10.1088/0004-637X/767/2/116.

M. A. G. Maia, L. N. da Costa, and D. W. Latham. A catalog of southern groups of
galaxies. ApJS, 69:809–829, April 1989. doi: 10.1086/191328.

G. A. Mamon. Are cluster ellipticals the products of mergers? ApJ, 401:L3–L6,
December 1992. doi: 10.1086/186656.

G. A. Mamon and E. L. Łokas. Dark matter in elliptical galaxies - II. Estimating
the mass within the virial radius. MNRAS, 363:705–722, November 2005a. doi:
10.1111/j.1365-2966.2005.09400.x.

G. A. Mamon, E. Łokas, A. Dekel, F. Stoehr, and T. J. Cox. Kinematical and Dy-
namical Modeling of Elliptical Galaxies. In G. A. Mamon, F. Combes, C. Deffayet,
and B. Fort, editors, EAS Publications Series, volume 20 of EAS Publications Series,
pages 139–148, 2006. doi: 10.1051/eas:2006061. arXiv:astro-ph/0601345.

G. A. Mamon, A. Biviano, and G. Murante. The universal distribution of halo
interlopers in projected phase space. Bias in galaxy cluster concentration and
velocity anisotropy? A&A, 520:A30, October 2010.

G. A. Mamon, A. Biviano, and G. Boué. MAMPOSSt: Modelling Anisotropy and
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